rtl8723cs/hal/hal_com_phycfg.c

4441 lines
126 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _HAL_COM_PHYCFG_C_
#include <drv_types.h>
#include <hal_data.h>
/*
* rtw_regsty_get_target_tx_power -
*
* Return dBm or -1 for undefined
*/
s8 rtw_regsty_get_target_tx_power(
IN PADAPTER Adapter,
IN u8 Band,
IN u8 RfPath,
IN RATE_SECTION RateSection
)
{
struct registry_priv *regsty = adapter_to_regsty(Adapter);
s8 value = 0;
if (RfPath > RF_PATH_D) {
DBG_871X_LEVEL(_drv_always_, "%s invalid RfPath:%d\n", __func__, RfPath);
return -1;
}
if (Band != BAND_ON_2_4G
#ifdef CONFIG_IEEE80211_BAND_5GHZ
&& Band != BAND_ON_5G
#endif
) {
DBG_871X_LEVEL(_drv_always_, "%s invalid Band:%d\n", __func__, Band);
return -1;
}
if (RateSection >= RATE_SECTION_NUM
#ifdef CONFIG_IEEE80211_BAND_5GHZ
|| (Band == BAND_ON_5G && RateSection == CCK)
#endif
) {
DBG_871X_LEVEL(_drv_always_, "%s invalid RateSection:%d in %sG, RfPath:%d\n", __func__
, RateSection, (Band == BAND_ON_2_4G) ? "2.4" : "5", RfPath);
return -1;
}
if (Band == BAND_ON_2_4G)
value = regsty->target_tx_pwr_2g[RfPath][RateSection];
#ifdef CONFIG_IEEE80211_BAND_5GHZ
else /* BAND_ON_5G */
value = regsty->target_tx_pwr_5g[RfPath][RateSection - 1];
#endif
return value;
}
bool rtw_regsty_chk_target_tx_power_valid(_adapter *adapter)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
int path, tx_num, band, rs;
s8 target;
for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) {
if (!hal_is_band_support(adapter, band))
continue;
for (path = 0; path < RF_PATH_MAX; path++) {
if (path >= hal_data->NumTotalRFPath)
break;
for (rs = 0; rs < RATE_SECTION_NUM; rs++) {
tx_num = rate_section_to_tx_num(rs);
if (tx_num >= hal_spec->nss_num)
continue;
if (band == BAND_ON_5G && IS_CCK_RATE_SECTION(rs))
continue;
if (IS_VHT_RATE_SECTION(rs) && !IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(adapter))
continue;
target = rtw_regsty_get_target_tx_power(adapter, band, path, rs);
if (target == -1)
return _FALSE;
}
}
}
return _TRUE;
}
/*
* PHY_GetTxPowerByRateBase -
*
* Return 2 times of dBm
*/
u8
PHY_GetTxPowerByRateBase(
IN PADAPTER Adapter,
IN u8 Band,
IN u8 RfPath,
IN u8 TxNum,
IN RATE_SECTION RateSection
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 value = 0;
if (RfPath > RF_PATH_D) {
DBG_871X_LEVEL(_drv_always_, "%s invalid RfPath:%d\n", __func__, RfPath);
return 0;
}
if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) {
DBG_871X_LEVEL(_drv_always_, "%s invalid Band:%d\n", __func__, Band);
return 0;
}
if (RateSection >= RATE_SECTION_NUM
|| (Band == BAND_ON_5G && RateSection == CCK)
) {
DBG_871X_LEVEL(_drv_always_, "%s invalid RateSection:%d in %sG, RfPath:%d, TxNum:%d\n", __func__
, RateSection, (Band == BAND_ON_2_4G) ? "2.4" : "5", RfPath, TxNum);
return 0;
}
if (Band == BAND_ON_2_4G)
value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][RateSection];
else /* BAND_ON_5G */
value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][RateSection - 1];
return value;
}
VOID
phy_SetTxPowerByRateBase(
IN PADAPTER Adapter,
IN u8 Band,
IN u8 RfPath,
IN RATE_SECTION RateSection,
IN u8 TxNum,
IN u8 Value
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if (RfPath > RF_PATH_D) {
DBG_871X_LEVEL(_drv_always_, "%s invalid RfPath:%d\n", __func__, RfPath);
return;
}
if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) {
DBG_871X_LEVEL(_drv_always_, "%s invalid Band:%d\n", __func__, Band);
return;
}
if (RateSection >= RATE_SECTION_NUM
|| (Band == BAND_ON_5G && RateSection == CCK)
) {
DBG_871X_LEVEL(_drv_always_, "%s invalid RateSection:%d in %sG, RfPath:%d, TxNum:%d\n", __func__
, RateSection, (Band == BAND_ON_2_4G) ? "2.4" : "5", RfPath, TxNum);
return;
}
if (Band == BAND_ON_2_4G)
pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][RateSection] = Value;
else /* BAND_ON_5G */
pHalData->TxPwrByRateBase5G[RfPath][TxNum][RateSection - 1] = Value;
}
/*
* phy_get_target_tx_power -
*
* Return 2 times of dBm
*/
u8 phy_get_target_tx_power(
IN PADAPTER Adapter,
IN u8 Band,
IN u8 RfPath,
IN RATE_SECTION RateSection
)
{
struct registry_priv *regsty = adapter_to_regsty(Adapter);
s16 target_power;
if (phy_is_tx_power_by_rate_needed(Adapter) == _FALSE && regsty->target_tx_pwr_valid == _TRUE)
target_power = 2 * rtw_regsty_get_target_tx_power(Adapter, Band, RfPath, RateSection);
else
target_power = PHY_GetTxPowerByRateBase(Adapter, Band, RfPath, rate_section_to_tx_num(RateSection), RateSection);
return target_power;
}
#ifdef TX_POWER_BY_RATE_OLD
VOID
phy_StoreTxPowerByRateBaseOld(
IN PADAPTER pAdapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA( pAdapter );
u16 rawValue = 0;
u8 base = 0;
u8 path = 0;
rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][7] >> 8 ) & 0xFF;
base = ( rawValue >> 4 ) * 10 + ( rawValue & 0xF );
phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, CCK, RF_1TX, base );
rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][1] >> 24 ) & 0xFF;
base = ( rawValue >> 4 ) * 10 + ( rawValue & 0xF );
phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, OFDM, RF_1TX, base );
rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][3] >> 24 ) & 0xFF;
base = ( rawValue >> 4 ) * 10 + ( rawValue & 0xF );
phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, HT_MCS0_MCS7, RF_1TX, base );
rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][5] >> 24 ) & 0xFF;
base = ( rawValue >> 4) * 10 + ( rawValue & 0xF );
phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, HT_MCS8_MCS15, RF_2TX, base );
rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][7] & 0xFF );
base = ( rawValue >> 4 ) * 10 + ( rawValue & 0xF );
phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, CCK, RF_1TX, base );
rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][9] >> 24 ) & 0xFF;
base = ( rawValue >> 4 ) * 10 + ( rawValue & 0xF );
phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, OFDM, RF_1TX, base );
rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][11] >> 24 ) & 0xFF;
base = ( rawValue >> 4 ) * 10 + ( rawValue & 0xF );
phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, HT_MCS0_MCS7, RF_1TX, base );
rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][13] >> 24 ) & 0xFF;
base = ( rawValue >> 4 ) * 10 + ( rawValue & 0xF );
phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, HT_MCS8_MCS15, RF_2TX, base );
}
#endif /* TX_POWER_BY_RATE_OLD */
VOID
phy_StoreTxPowerByRateBase(
IN PADAPTER pAdapter
)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(pAdapter);
u8 rate_sec_base[RATE_SECTION_NUM] = {
MGN_11M,
MGN_54M,
MGN_MCS7,
MGN_MCS15,
MGN_MCS23,
MGN_MCS31,
MGN_VHT1SS_MCS7,
MGN_VHT2SS_MCS7,
MGN_VHT3SS_MCS7,
MGN_VHT4SS_MCS7,
};
u8 band, path, rs, tx_num, base, index;
for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) {
for (path = RF_PATH_A; path < RF_PATH_MAX; path++) {
/* TODO: 8814A's NumTotalRFPath differs at probe(3) and up(4), need fixed
if (path >= hal_data->NumTotalRFPath)
break;
*/
for (rs = 0; rs < RATE_SECTION_NUM; rs++) {
tx_num = rate_section_to_tx_num(rs);
if (tx_num >= hal_spec->nss_num)
continue;
if (band == BAND_ON_5G && IS_CCK_RATE_SECTION(rs))
continue;
base = _PHY_GetTxPowerByRate(pAdapter, band, path, tx_num, rate_sec_base[rs]);
phy_SetTxPowerByRateBase(pAdapter, band, path, rs, tx_num, base);
}
}
}
}
#ifdef TX_POWER_BY_RATE_OLD
u8
PHY_GetRateSectionIndexOfTxPowerByRate(
IN PADAPTER pAdapter,
IN u32 RegAddr,
IN u32 BitMask
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA( pAdapter );
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
u8 index = 0;
if ( pDM_Odm->PhyRegPgVersion == 0 )
{
switch ( RegAddr )
{
case rTxAGC_A_Rate18_06: index = 0; break;
case rTxAGC_A_Rate54_24: index = 1; break;
case rTxAGC_A_CCK1_Mcs32: index = 6; break;
case rTxAGC_B_CCK11_A_CCK2_11:
if ( BitMask == bMaskH3Bytes )
index = 7;
else if ( BitMask == 0x000000ff )
index = 15;
break;
case rTxAGC_A_Mcs03_Mcs00: index = 2; break;
case rTxAGC_A_Mcs07_Mcs04: index = 3; break;
case rTxAGC_A_Mcs11_Mcs08: index = 4; break;
case rTxAGC_A_Mcs15_Mcs12: index = 5; break;
case rTxAGC_B_Rate18_06: index = 8; break;
case rTxAGC_B_Rate54_24: index = 9; break;
case rTxAGC_B_CCK1_55_Mcs32: index = 14; break;
case rTxAGC_B_Mcs03_Mcs00: index = 10; break;
case rTxAGC_B_Mcs07_Mcs04: index = 11; break;
case rTxAGC_B_Mcs11_Mcs08: index = 12; break;
case rTxAGC_B_Mcs15_Mcs12: index = 13; break;
default:
DBG_871X("Invalid RegAddr 0x3%x in PHY_GetRateSectionIndexOfTxPowerByRate()", RegAddr );
break;
};
}
return index;
}
#endif /* TX_POWER_BY_RATE_OLD */
VOID
PHY_GetRateValuesOfTxPowerByRate(
IN PADAPTER pAdapter,
IN u32 RegAddr,
IN u32 BitMask,
IN u32 Value,
OUT u8 *Rate,
OUT s8 *PwrByRateVal,
OUT u8 *RateNum
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA( pAdapter );
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
u8 index = 0, i = 0;
switch ( RegAddr )
{
case rTxAGC_A_Rate18_06:
case rTxAGC_B_Rate18_06:
Rate[0] = MGN_6M;
Rate[1] = MGN_9M;
Rate[2] = MGN_12M;
Rate[3] = MGN_18M;
for ( i = 0; i < 4; ++ i )
{
PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 4;
break;
case rTxAGC_A_Rate54_24:
case rTxAGC_B_Rate54_24:
Rate[0] = MGN_24M;
Rate[1] = MGN_36M;
Rate[2] = MGN_48M;
Rate[3] = MGN_54M;
for ( i = 0; i < 4; ++ i )
{
PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 4;
break;
case rTxAGC_A_CCK1_Mcs32:
Rate[0] = MGN_1M;
PwrByRateVal[0] = ( s8 ) ( ( ( ( Value >> (8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> 8 ) & 0xF ) );
*RateNum = 1;
break;
case rTxAGC_B_CCK11_A_CCK2_11:
if ( BitMask == 0xffffff00 )
{
Rate[0] = MGN_2M;
Rate[1] = MGN_5_5M;
Rate[2] = MGN_11M;
for ( i = 1; i < 4; ++ i )
{
PwrByRateVal[i - 1] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 3;
}
else if ( BitMask == 0x000000ff )
{
Rate[0] = MGN_11M;
PwrByRateVal[0] = ( s8 ) ( ( ( ( Value >> 4 ) & 0xF ) ) * 10 +
( Value & 0xF ) );
*RateNum = 1;
}
break;
case rTxAGC_A_Mcs03_Mcs00:
case rTxAGC_B_Mcs03_Mcs00:
Rate[0] = MGN_MCS0;
Rate[1] = MGN_MCS1;
Rate[2] = MGN_MCS2;
Rate[3] = MGN_MCS3;
for ( i = 0; i < 4; ++ i )
{
PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 4;
break;
case rTxAGC_A_Mcs07_Mcs04:
case rTxAGC_B_Mcs07_Mcs04:
Rate[0] = MGN_MCS4;
Rate[1] = MGN_MCS5;
Rate[2] = MGN_MCS6;
Rate[3] = MGN_MCS7;
for ( i = 0; i < 4; ++ i )
{
PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 4;
break;
case rTxAGC_A_Mcs11_Mcs08:
case rTxAGC_B_Mcs11_Mcs08:
Rate[0] = MGN_MCS8;
Rate[1] = MGN_MCS9;
Rate[2] = MGN_MCS10;
Rate[3] = MGN_MCS11;
for ( i = 0; i < 4; ++ i )
{
PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 4;
break;
case rTxAGC_A_Mcs15_Mcs12:
case rTxAGC_B_Mcs15_Mcs12:
Rate[0] = MGN_MCS12;
Rate[1] = MGN_MCS13;
Rate[2] = MGN_MCS14;
Rate[3] = MGN_MCS15;
for ( i = 0; i < 4; ++ i )
{
PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 4;
break;
case rTxAGC_B_CCK1_55_Mcs32:
Rate[0] = MGN_1M;
Rate[1] = MGN_2M;
Rate[2] = MGN_5_5M;
for ( i = 1; i < 4; ++ i )
{
PwrByRateVal[i - 1] = ( s8 ) ( ( ( ( Value >> ( i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> ( i * 8) ) & 0xF ) );
}
*RateNum = 3;
break;
case 0xC20:
case 0xE20:
case 0x1820:
case 0x1a20:
Rate[0] = MGN_1M;
Rate[1] = MGN_2M;
Rate[2] = MGN_5_5M;
Rate[3] = MGN_11M;
for ( i = 0; i < 4; ++ i )
{
PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 4;
break;
case 0xC24:
case 0xE24:
case 0x1824:
case 0x1a24:
Rate[0] = MGN_6M;
Rate[1] = MGN_9M;
Rate[2] = MGN_12M;
Rate[3] = MGN_18M;
for ( i = 0; i < 4; ++ i )
{
PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 4;
break;
case 0xC28:
case 0xE28:
case 0x1828:
case 0x1a28:
Rate[0] = MGN_24M;
Rate[1] = MGN_36M;
Rate[2] = MGN_48M;
Rate[3] = MGN_54M;
for ( i = 0; i < 4; ++ i )
{
PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 4;
break;
case 0xC2C:
case 0xE2C:
case 0x182C:
case 0x1a2C:
Rate[0] = MGN_MCS0;
Rate[1] = MGN_MCS1;
Rate[2] = MGN_MCS2;
Rate[3] = MGN_MCS3;
for ( i = 0; i < 4; ++ i )
{
PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 4;
break;
case 0xC30:
case 0xE30:
case 0x1830:
case 0x1a30:
Rate[0] = MGN_MCS4;
Rate[1] = MGN_MCS5;
Rate[2] = MGN_MCS6;
Rate[3] = MGN_MCS7;
for ( i = 0; i < 4; ++ i )
{
PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 4;
break;
case 0xC34:
case 0xE34:
case 0x1834:
case 0x1a34:
Rate[0] = MGN_MCS8;
Rate[1] = MGN_MCS9;
Rate[2] = MGN_MCS10;
Rate[3] = MGN_MCS11;
for ( i = 0; i < 4; ++ i )
{
PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 4;
break;
case 0xC38:
case 0xE38:
case 0x1838:
case 0x1a38:
Rate[0] = MGN_MCS12;
Rate[1] = MGN_MCS13;
Rate[2] = MGN_MCS14;
Rate[3] = MGN_MCS15;
for ( i = 0; i < 4; ++ i )
{
PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 4;
break;
case 0xC3C:
case 0xE3C:
case 0x183C:
case 0x1a3C:
Rate[0] = MGN_VHT1SS_MCS0;
Rate[1] = MGN_VHT1SS_MCS1;
Rate[2] = MGN_VHT1SS_MCS2;
Rate[3] = MGN_VHT1SS_MCS3;
for ( i = 0; i < 4; ++ i )
{
PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 4;
break;
case 0xC40:
case 0xE40:
case 0x1840:
case 0x1a40:
Rate[0] = MGN_VHT1SS_MCS4;
Rate[1] = MGN_VHT1SS_MCS5;
Rate[2] = MGN_VHT1SS_MCS6;
Rate[3] = MGN_VHT1SS_MCS7;
for ( i = 0; i < 4; ++ i )
{
PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 4;
break;
case 0xC44:
case 0xE44:
case 0x1844:
case 0x1a44:
Rate[0] = MGN_VHT1SS_MCS8;
Rate[1] = MGN_VHT1SS_MCS9;
Rate[2] = MGN_VHT2SS_MCS0;
Rate[3] = MGN_VHT2SS_MCS1;
for ( i = 0; i < 4; ++ i )
{
PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 4;
break;
case 0xC48:
case 0xE48:
case 0x1848:
case 0x1a48:
Rate[0] = MGN_VHT2SS_MCS2;
Rate[1] = MGN_VHT2SS_MCS3;
Rate[2] = MGN_VHT2SS_MCS4;
Rate[3] = MGN_VHT2SS_MCS5;
for ( i = 0; i < 4; ++ i )
{
PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 4;
break;
case 0xC4C:
case 0xE4C:
case 0x184C:
case 0x1a4C:
Rate[0] = MGN_VHT2SS_MCS6;
Rate[1] = MGN_VHT2SS_MCS7;
Rate[2] = MGN_VHT2SS_MCS8;
Rate[3] = MGN_VHT2SS_MCS9;
for ( i = 0; i < 4; ++ i )
{
PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 4;
break;
case 0xCD8:
case 0xED8:
case 0x18D8:
case 0x1aD8:
Rate[0] = MGN_MCS16;
Rate[1] = MGN_MCS17;
Rate[2] = MGN_MCS18;
Rate[3] = MGN_MCS19;
for ( i = 0; i < 4; ++ i )
{
PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 4;
break;
case 0xCDC:
case 0xEDC:
case 0x18DC:
case 0x1aDC:
Rate[0] = MGN_MCS20;
Rate[1] = MGN_MCS21;
Rate[2] = MGN_MCS22;
Rate[3] = MGN_MCS23;
for ( i = 0; i < 4; ++ i )
{
PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 4;
break;
case 0xCE0:
case 0xEE0:
case 0x18E0:
case 0x1aE0:
Rate[0] = MGN_VHT3SS_MCS0;
Rate[1] = MGN_VHT3SS_MCS1;
Rate[2] = MGN_VHT3SS_MCS2;
Rate[3] = MGN_VHT3SS_MCS3;
for ( i = 0; i < 4; ++ i )
{
PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 4;
break;
case 0xCE4:
case 0xEE4:
case 0x18E4:
case 0x1aE4:
Rate[0] = MGN_VHT3SS_MCS4;
Rate[1] = MGN_VHT3SS_MCS5;
Rate[2] = MGN_VHT3SS_MCS6;
Rate[3] = MGN_VHT3SS_MCS7;
for ( i = 0; i < 4; ++ i )
{
PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 4;
break;
case 0xCE8:
case 0xEE8:
case 0x18E8:
case 0x1aE8:
Rate[0] = MGN_VHT3SS_MCS8;
Rate[1] = MGN_VHT3SS_MCS9;
for ( i = 0; i < 2; ++ i )
{
PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 +
( ( Value >> (i * 8) ) & 0xF ) );
}
*RateNum = 2;
break;
default:
DBG_871X_LEVEL(_drv_always_, "Invalid RegAddr 0x%x in %s()\n", RegAddr, __func__);
break;
};
}
void
PHY_StoreTxPowerByRateNew(
IN PADAPTER pAdapter,
IN u32 Band,
IN u32 RfPath,
IN u32 TxNum,
IN u32 RegAddr,
IN u32 BitMask,
IN u32 Data
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
u8 i = 0, rates[4] = {0}, rateNum = 0;
s8 PwrByRateVal[4] = {0};
PHY_GetRateValuesOfTxPowerByRate(pAdapter, RegAddr, BitMask, Data, rates, PwrByRateVal, &rateNum);
if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) {
DBG_871X_LEVEL(_drv_always_, "Invalid Band %d\n", Band);
return;
}
if (RfPath > ODM_RF_PATH_D) {
DBG_871X_LEVEL(_drv_always_, "Invalid RfPath %d\n", RfPath);
return;
}
if (TxNum > ODM_RF_PATH_D) {
DBG_871X_LEVEL(_drv_always_, "Invalid TxNum %d\n", TxNum);
return;
}
for (i = 0; i < rateNum; ++i) {
u8 rate_idx = PHY_GetRateIndexOfTxPowerByRate(rates[i]);
if (IS_1T_RATE(rates[i]))
pHalData->TxPwrByRateOffset[Band][RfPath][RF_1TX][rate_idx] = PwrByRateVal[i];
else if (IS_2T_RATE(rates[i]))
pHalData->TxPwrByRateOffset[Band][RfPath][RF_2TX][rate_idx] = PwrByRateVal[i];
else if (IS_3T_RATE(rates[i]))
pHalData->TxPwrByRateOffset[Band][RfPath][RF_3TX][rate_idx] = PwrByRateVal[i];
else if (IS_4T_RATE(rates[i]))
pHalData->TxPwrByRateOffset[Band][RfPath][RF_4TX][rate_idx] = PwrByRateVal[i];
else
rtw_warn_on(1);
}
}
#ifdef TX_POWER_BY_RATE_OLD
void
PHY_StoreTxPowerByRateOld(
IN PADAPTER pAdapter,
IN u32 RegAddr,
IN u32 BitMask,
IN u32 Data
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
u8 index = PHY_GetRateSectionIndexOfTxPowerByRate( pAdapter, RegAddr, BitMask );
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][index] = Data;
//DBG_871X("MCSTxPowerLevelOriginalOffset[%d][0] = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][0]);
}
#endif /* TX_POWER_BY_RATE_OLD */
VOID
PHY_InitTxPowerByRate(
IN PADAPTER pAdapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
u8 band = 0, rfPath = 0, TxNum = 0, rate = 0, i = 0, j = 0;
if ( IS_HARDWARE_TYPE_8188E( pAdapter ) )
{
for ( i = 0; i < MAX_PG_GROUP; ++i )
for ( j = 0; j < 16; ++j )
pHalData->MCSTxPowerLevelOriginalOffset[i][j] = 0;
}
else
{
for ( band = BAND_ON_2_4G; band <= BAND_ON_5G; ++band )
for ( rfPath = 0; rfPath < TX_PWR_BY_RATE_NUM_RF; ++rfPath )
for ( TxNum = 0; TxNum < TX_PWR_BY_RATE_NUM_RF; ++TxNum )
for ( rate = 0; rate < TX_PWR_BY_RATE_NUM_RATE; ++rate )
pHalData->TxPwrByRateOffset[band][rfPath][TxNum][rate] = 0;
}
}
VOID
PHY_StoreTxPowerByRate(
IN PADAPTER pAdapter,
IN u32 Band,
IN u32 RfPath,
IN u32 TxNum,
IN u32 RegAddr,
IN u32 BitMask,
IN u32 Data
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
if ( pDM_Odm->PhyRegPgVersion > 0 )
{
PHY_StoreTxPowerByRateNew( pAdapter, Band, RfPath, TxNum, RegAddr, BitMask, Data );
}
#ifdef TX_POWER_BY_RATE_OLD
else if ( pDM_Odm->PhyRegPgVersion == 0 )
{
PHY_StoreTxPowerByRateOld( pAdapter, RegAddr, BitMask, Data );
if ( RegAddr == rTxAGC_A_Mcs15_Mcs12 && pHalData->rf_type == RF_1T1R )
pHalData->pwrGroupCnt++;
else if ( RegAddr == rTxAGC_B_Mcs15_Mcs12 && pHalData->rf_type != RF_1T1R )
pHalData->pwrGroupCnt++;
}
#endif
else
DBG_871X("Invalid PHY_REG_PG.txt version %d\n", pDM_Odm->PhyRegPgVersion );
}
#ifdef TX_POWER_BY_RATE_OLD
VOID
phy_ConvertTxPowerByRateByBase(
IN u32* pData,
IN u8 Start,
IN u8 End,
IN u8 BaseValue
)
{
s8 i = 0;
u8 TempValue = 0;
u32 TempData = 0;
for ( i = 3; i >= 0; --i )
{
if ( i >= Start && i <= End )
{
// Get the exact value
TempValue = ( u8 ) ( *pData >> ( i * 8 ) ) & 0xF;
TempValue += ( ( u8 ) ( ( *pData >> ( i * 8 + 4 ) ) & 0xF ) ) * 10;
// Change the value to a relative value
TempValue = ( TempValue > BaseValue ) ? TempValue - BaseValue : BaseValue - TempValue;
}
else
{
TempValue = ( u8 ) ( *pData >> ( i * 8 ) ) & 0xFF;
}
TempData <<= 8;
TempData |= TempValue;
}
*pData = TempData;
}
VOID
PHY_ConvertTxPowerByRateInDbmToRelativeValuesOld(
IN PADAPTER pAdapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA( pAdapter );
u8 base = 0;
//DBG_871X("===>PHY_ConvertTxPowerByRateInDbmToRelativeValuesOld()\n" );
// CCK
base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, RF_1TX, CCK );
phy_ConvertTxPowerByRateByBase(
&( pHalData->MCSTxPowerLevelOriginalOffset[0][6] ), 1, 1, base );
phy_ConvertTxPowerByRateByBase(
&( pHalData->MCSTxPowerLevelOriginalOffset[0][7] ), 1, 3, base );
// OFDM
base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, RF_1TX, OFDM );
phy_ConvertTxPowerByRateByBase(
&( pHalData->MCSTxPowerLevelOriginalOffset[0][0] ), 0, 3, base );
phy_ConvertTxPowerByRateByBase(
&( pHalData->MCSTxPowerLevelOriginalOffset[0][1] ), 0, 3, base );
// HT MCS0~7
base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, RF_1TX, HT_MCS0_MCS7 );
phy_ConvertTxPowerByRateByBase(
&( pHalData->MCSTxPowerLevelOriginalOffset[0][2] ), 0, 3, base );
phy_ConvertTxPowerByRateByBase(
&( pHalData->MCSTxPowerLevelOriginalOffset[0][3] ), 0, 3, base );
// HT MCS8~15
base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, RF_2TX, HT_MCS8_MCS15 );
phy_ConvertTxPowerByRateByBase(
&( pHalData->MCSTxPowerLevelOriginalOffset[0][4] ), 0, 3, base );
phy_ConvertTxPowerByRateByBase(
&( pHalData->MCSTxPowerLevelOriginalOffset[0][5] ), 0, 3, base );
// CCK
base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, RF_1TX, CCK );
phy_ConvertTxPowerByRateByBase(
&( pHalData->MCSTxPowerLevelOriginalOffset[0][14] ), 1, 3, base );
phy_ConvertTxPowerByRateByBase(
&( pHalData->MCSTxPowerLevelOriginalOffset[0][15] ), 0, 0, base );
// OFDM
base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, RF_1TX, OFDM );
phy_ConvertTxPowerByRateByBase(
&( pHalData->MCSTxPowerLevelOriginalOffset[0][8] ), 0, 3, base );
phy_ConvertTxPowerByRateByBase(
&( pHalData->MCSTxPowerLevelOriginalOffset[0][9] ), 0, 3, base );
// HT MCS0~7
base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, RF_1TX, HT_MCS0_MCS7 );
phy_ConvertTxPowerByRateByBase(
&( pHalData->MCSTxPowerLevelOriginalOffset[0][10] ), 0, 3, base );
phy_ConvertTxPowerByRateByBase(
&( pHalData->MCSTxPowerLevelOriginalOffset[0][11] ), 0, 3, base );
// HT MCS8~15
base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, RF_2TX, HT_MCS8_MCS15 );
phy_ConvertTxPowerByRateByBase(
&( pHalData->MCSTxPowerLevelOriginalOffset[0][12] ), 0, 3, base );
phy_ConvertTxPowerByRateByBase(
&( pHalData->MCSTxPowerLevelOriginalOffset[0][13] ), 0, 3, base );
//DBG_871X("<===PHY_ConvertTxPowerByRateInDbmToRelativeValuesOld()\n" );
}
#endif /* TX_POWER_BY_RATE_OLD */
VOID
phy_ConvertTxPowerByRateInDbmToRelativeValues(
IN PADAPTER pAdapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA( pAdapter );
u8 base = 0, i = 0, value = 0,
band = 0, path = 0, txNum = 0, index = 0,
startIndex = 0, endIndex = 0;
u8 cckRates[4] = {MGN_1M, MGN_2M, MGN_5_5M, MGN_11M},
ofdmRates[8] = {MGN_6M, MGN_9M, MGN_12M, MGN_18M, MGN_24M, MGN_36M, MGN_48M, MGN_54M},
mcs0_7Rates[8] = {MGN_MCS0, MGN_MCS1, MGN_MCS2, MGN_MCS3, MGN_MCS4, MGN_MCS5, MGN_MCS6, MGN_MCS7},
mcs8_15Rates[8] = {MGN_MCS8, MGN_MCS9, MGN_MCS10, MGN_MCS11, MGN_MCS12, MGN_MCS13, MGN_MCS14, MGN_MCS15},
mcs16_23Rates[8] = {MGN_MCS16, MGN_MCS17, MGN_MCS18, MGN_MCS19, MGN_MCS20, MGN_MCS21, MGN_MCS22, MGN_MCS23},
vht1ssRates[10] = {MGN_VHT1SS_MCS0, MGN_VHT1SS_MCS1, MGN_VHT1SS_MCS2, MGN_VHT1SS_MCS3, MGN_VHT1SS_MCS4,
MGN_VHT1SS_MCS5, MGN_VHT1SS_MCS6, MGN_VHT1SS_MCS7, MGN_VHT1SS_MCS8, MGN_VHT1SS_MCS9},
vht2ssRates[10] = {MGN_VHT2SS_MCS0, MGN_VHT2SS_MCS1, MGN_VHT2SS_MCS2, MGN_VHT2SS_MCS3, MGN_VHT2SS_MCS4,
MGN_VHT2SS_MCS5, MGN_VHT2SS_MCS6, MGN_VHT2SS_MCS7, MGN_VHT2SS_MCS8, MGN_VHT2SS_MCS9},
vht3ssRates[10] = {MGN_VHT3SS_MCS0, MGN_VHT3SS_MCS1, MGN_VHT3SS_MCS2, MGN_VHT3SS_MCS3, MGN_VHT3SS_MCS4,
MGN_VHT3SS_MCS5, MGN_VHT3SS_MCS6, MGN_VHT3SS_MCS7, MGN_VHT3SS_MCS8, MGN_VHT3SS_MCS9};
//DBG_871X("===>PHY_ConvertTxPowerByRateInDbmToRelativeValues()\n" );
for ( band = BAND_ON_2_4G; band <= BAND_ON_5G; ++band )
{
for ( path = ODM_RF_PATH_A; path <= ODM_RF_PATH_D; ++path )
{
for ( txNum = RF_1TX; txNum < RF_MAX_TX_NUM; ++txNum )
{
// CCK
base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_11M );
for ( i = 0; i < sizeof( cckRates ); ++i )
{
value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, cckRates[i] );
PHY_SetTxPowerByRate( pAdapter, band, path, txNum, cckRates[i], value - base );
}
// OFDM
base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_54M );
for ( i = 0; i < sizeof( ofdmRates ); ++i )
{
value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, ofdmRates[i] );
PHY_SetTxPowerByRate( pAdapter, band, path, txNum, ofdmRates[i], value - base );
}
// HT MCS0~7
base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_MCS7 );
for ( i = 0; i < sizeof( mcs0_7Rates ); ++i )
{
value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, mcs0_7Rates[i] );
PHY_SetTxPowerByRate( pAdapter, band, path, txNum, mcs0_7Rates[i], value - base );
}
// HT MCS8~15
base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_MCS15 );
for ( i = 0; i < sizeof( mcs8_15Rates ); ++i )
{
value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, mcs8_15Rates[i] );
PHY_SetTxPowerByRate( pAdapter, band, path, txNum, mcs8_15Rates[i], value - base );
}
// HT MCS16~23
base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_MCS23 );
for ( i = 0; i < sizeof( mcs16_23Rates ); ++i )
{
value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, mcs16_23Rates[i] );
PHY_SetTxPowerByRate( pAdapter, band, path, txNum, mcs16_23Rates[i], value - base );
}
// VHT 1SS
base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_VHT1SS_MCS7 );
for ( i = 0; i < sizeof( vht1ssRates ); ++i )
{
value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, vht1ssRates[i] );
PHY_SetTxPowerByRate( pAdapter, band, path, txNum, vht1ssRates[i], value - base );
}
// VHT 2SS
base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_VHT2SS_MCS7 );
for ( i = 0; i < sizeof( vht2ssRates ); ++i )
{
value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, vht2ssRates[i] );
PHY_SetTxPowerByRate( pAdapter, band, path, txNum, vht2ssRates[i], value - base );
}
// VHT 3SS
base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_VHT3SS_MCS7 );
for ( i = 0; i < sizeof( vht3ssRates ); ++i )
{
value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, vht3ssRates[i] );
PHY_SetTxPowerByRate( pAdapter, band, path, txNum, vht3ssRates[i], value - base );
}
}
}
}
//DBG_871X("<===PHY_ConvertTxPowerByRateInDbmToRelativeValues()\n" );
}
/*
* This function must be called if the value in the PHY_REG_PG.txt(or header)
* is exact dBm values
*/
VOID
PHY_TxPowerByRateConfiguration(
IN PADAPTER pAdapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA( pAdapter);
phy_StoreTxPowerByRateBase( pAdapter );
phy_ConvertTxPowerByRateInDbmToRelativeValues( pAdapter );
}
VOID
PHY_SetTxPowerIndexByRateSection(
IN PADAPTER pAdapter,
IN u8 RFPath,
IN u8 Channel,
IN u8 RateSection
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
if ( RateSection == CCK )
{
u8 cckRates[] = {MGN_1M, MGN_2M, MGN_5_5M, MGN_11M};
if ( pHalData->CurrentBandType == BAND_ON_2_4G )
PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel,
cckRates, sizeof(cckRates)/sizeof(u8) );
}
else if ( RateSection == OFDM )
{
u8 ofdmRates[] = {MGN_6M, MGN_9M, MGN_12M, MGN_18M, MGN_24M, MGN_36M, MGN_48M, MGN_54M};
PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel,
ofdmRates, sizeof(ofdmRates)/sizeof(u8));
}
else if ( RateSection == HT_MCS0_MCS7 )
{
u8 htRates1T[] = {MGN_MCS0, MGN_MCS1, MGN_MCS2, MGN_MCS3, MGN_MCS4, MGN_MCS5, MGN_MCS6, MGN_MCS7};
PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel,
htRates1T, sizeof(htRates1T)/sizeof(u8));
}
else if ( RateSection == HT_MCS8_MCS15 )
{
u8 htRates2T[] = {MGN_MCS8, MGN_MCS9, MGN_MCS10, MGN_MCS11, MGN_MCS12, MGN_MCS13, MGN_MCS14, MGN_MCS15};
PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel,
htRates2T, sizeof(htRates2T)/sizeof(u8));
}
else if ( RateSection == HT_MCS16_MCS23 )
{
u1Byte htRates3T[] = {MGN_MCS16, MGN_MCS17, MGN_MCS18, MGN_MCS19, MGN_MCS20, MGN_MCS21, MGN_MCS22, MGN_MCS23};
PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel,
htRates3T, sizeof(htRates3T)/sizeof(u1Byte));
}
else if ( RateSection == HT_MCS24_MCS31 )
{
u1Byte htRates4T[] = {MGN_MCS24, MGN_MCS25, MGN_MCS26, MGN_MCS27, MGN_MCS28, MGN_MCS29, MGN_MCS30, MGN_MCS31};
PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel,
htRates4T, sizeof(htRates4T)/sizeof(u1Byte));
}
else if ( RateSection == VHT_1SSMCS0_1SSMCS9 )
{
u8 vhtRates1T[] = {MGN_VHT1SS_MCS0, MGN_VHT1SS_MCS1, MGN_VHT1SS_MCS2, MGN_VHT1SS_MCS3, MGN_VHT1SS_MCS4,
MGN_VHT1SS_MCS5, MGN_VHT1SS_MCS6, MGN_VHT1SS_MCS7, MGN_VHT1SS_MCS8, MGN_VHT1SS_MCS9};
PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel,
vhtRates1T, sizeof(vhtRates1T)/sizeof(u8));
}
else if ( RateSection == VHT_2SSMCS0_2SSMCS9 )
{
u8 vhtRates2T[] = {MGN_VHT2SS_MCS0, MGN_VHT2SS_MCS1, MGN_VHT2SS_MCS2, MGN_VHT2SS_MCS3, MGN_VHT2SS_MCS4,
MGN_VHT2SS_MCS5, MGN_VHT2SS_MCS6, MGN_VHT2SS_MCS7, MGN_VHT2SS_MCS8, MGN_VHT2SS_MCS9};
PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel,
vhtRates2T, sizeof(vhtRates2T)/sizeof(u8));
}
else if ( RateSection == VHT_3SSMCS0_3SSMCS9 )
{
u1Byte vhtRates3T[] = {MGN_VHT3SS_MCS0, MGN_VHT3SS_MCS1, MGN_VHT3SS_MCS2, MGN_VHT3SS_MCS3, MGN_VHT3SS_MCS4,
MGN_VHT3SS_MCS5, MGN_VHT3SS_MCS6, MGN_VHT3SS_MCS7, MGN_VHT3SS_MCS8, MGN_VHT3SS_MCS9};
PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel,
vhtRates3T, sizeof(vhtRates3T)/sizeof(u1Byte));
}
else if ( RateSection == VHT_4SSMCS0_4SSMCS9 )
{
u1Byte vhtRates4T[] = {MGN_VHT4SS_MCS0, MGN_VHT4SS_MCS1, MGN_VHT4SS_MCS2, MGN_VHT4SS_MCS3, MGN_VHT4SS_MCS4,
MGN_VHT4SS_MCS5, MGN_VHT4SS_MCS6, MGN_VHT4SS_MCS7, MGN_VHT4SS_MCS8, MGN_VHT4SS_MCS9};
PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel,
vhtRates4T, sizeof(vhtRates4T)/sizeof(u1Byte));
}
else
{
DBG_871X("Invalid RateSection %d in %s", RateSection, __FUNCTION__ );
}
}
BOOLEAN
phy_GetChnlIndex(
IN u8 Channel,
OUT u8* ChannelIdx
)
{
u8 i = 0;
BOOLEAN bIn24G=_TRUE;
if (Channel <= 14) {
bIn24G = _TRUE;
*ChannelIdx = Channel - 1;
} else {
bIn24G = _FALSE;
for (i = 0; i < CENTER_CH_5G_ALL_NUM; ++i) {
if (center_ch_5g_all[i] == Channel) {
*ChannelIdx = i;
return bIn24G;
}
}
}
return bIn24G;
}
u8
PHY_GetTxPowerIndexBase(
IN PADAPTER pAdapter,
IN u8 RFPath,
IN u8 Rate,
IN CHANNEL_WIDTH BandWidth,
IN u8 Channel,
OUT PBOOLEAN bIn24G
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
u8 i = 0; //default set to 1S
u8 txPower = 0;
u8 chnlIdx = (Channel-1);
if (HAL_IsLegalChannel(pAdapter, Channel) == _FALSE)
{
chnlIdx = 0;
DBG_871X("Illegal channel!!\n");
}
*bIn24G = phy_GetChnlIndex(Channel, &chnlIdx);
//DBG_871X("[%s] Channel Index: %d\n", (*bIn24G?"2.4G":"5G"), chnlIdx);
if (*bIn24G) //3 ============================== 2.4 G ==============================
{
if ( IS_CCK_RATE(Rate) )
{
txPower = pHalData->Index24G_CCK_Base[RFPath][chnlIdx];
}
else if ( MGN_6M <= Rate )
{
txPower = pHalData->Index24G_BW40_Base[RFPath][chnlIdx];
}
else
{
DBG_871X("PHY_GetTxPowerIndexBase: INVALID Rate.\n");
}
//DBG_871X("Base Tx power(RF-%c, Rate #%d, Channel Index %d) = 0x%X\n",
// ((RFPath==0)?'A':'B'), Rate, chnlIdx, txPower);
// OFDM-1T
if ( (MGN_6M <= Rate && Rate <= MGN_54M) && ! IS_CCK_RATE(Rate) )
{
txPower += pHalData->OFDM_24G_Diff[RFPath][TX_1S];
//DBG_871X("+PowerDiff 2.4G (RF-%c): (OFDM-1T) = (%d)\n", ((RFPath==0)?'A':'B'), pHalData->OFDM_24G_Diff[RFPath][TX_1S]);
}
// BW20-1S, BW20-2S
if (BandWidth == CHANNEL_WIDTH_20)
{
if ( (MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_24G_Diff[RFPath][TX_1S];
if ( (MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_24G_Diff[RFPath][TX_2S];
if ( (MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_24G_Diff[RFPath][TX_3S];
if ( (MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_24G_Diff[RFPath][TX_4S];
//DBG_871X("+PowerDiff 2.4G (RF-%c): (BW20-1S, BW20-2S, BW20-3S, BW20-4S) = (%d, %d, %d, %d)\n", ((RFPath==0)?'A':(RFPath==1)?'B':(RFPath==2)?'C':'D'),
// pHalData->BW20_24G_Diff[RFPath][TX_1S], pHalData->BW20_24G_Diff[RFPath][TX_2S],
// pHalData->BW20_24G_Diff[RFPath][TX_3S], pHalData->BW20_24G_Diff[RFPath][TX_4S]);
}
// BW40-1S, BW40-2S
else if (BandWidth == CHANNEL_WIDTH_40)
{
if ( (MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][TX_1S];
if ( (MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][TX_2S];
if ( (MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][TX_3S];
if ( (MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][TX_4S];
//DBG_871X("+PowerDiff 2.4G (RF-%c): (BW40-1S, BW40-2S, BW40-3S, BW40-4S) = (%d, %d, %d, %d)\n", ((RFPath==0)?'A':(RFPath==1)?'B':(RFPath==2)?'C':'D'),
// pHalData->BW40_24G_Diff[RFPath][TX_1S], pHalData->BW40_24G_Diff[RFPath][TX_2S],
// pHalData->BW40_24G_Diff[RFPath][TX_3S], pHalData->BW40_24G_Diff[RFPath][TX_4S]);
}
// Willis suggest adopt BW 40M power index while in BW 80 mode
else if ( BandWidth == CHANNEL_WIDTH_80 )
{
if ( (MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][TX_1S];
if ( (MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][TX_2S];
if ( (MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][TX_3S];
if ( (MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][TX_4S];
//DBG_871X("+PowerDiff 2.4G (RF-%c): (BW40-1S, BW40-2S, BW40-3S, BW40-4T) = (%d, %d, %d, %d) P.S. Current is in BW 80MHz\n", ((RFPath==0)?'A':(RFPath==1)?'B':(RFPath==2)?'C':'D'),
// pHalData->BW40_24G_Diff[RFPath][TX_1S], pHalData->BW40_24G_Diff[RFPath][TX_2S],
// pHalData->BW40_24G_Diff[RFPath][TX_3S], pHalData->BW40_24G_Diff[RFPath][TX_4S]);
}
}
else //3 ============================== 5 G ==============================
{
if ( MGN_6M <= Rate )
{
txPower = pHalData->Index5G_BW40_Base[RFPath][chnlIdx];
}
else
{
DBG_871X("===> mpt_ProQueryCalTxPower_Jaguar: INVALID Rate.\n");
}
//DBG_871X("Base Tx power(RF-%c, Rate #%d, Channel Index %d) = 0x%X\n",
// ((RFPath==0)?'A':'B'), Rate, chnlIdx, txPower);
// OFDM-1T
if ( (MGN_6M <= Rate && Rate <= MGN_54M) && ! IS_CCK_RATE(Rate))
{
txPower += pHalData->OFDM_5G_Diff[RFPath][TX_1S];
//DBG_871X("+PowerDiff 5G (RF-%c): (OFDM-1T) = (%d)\n", ((RFPath==0)?'A':'B'), pHalData->OFDM_5G_Diff[RFPath][TX_1S]);
}
// BW20-1S, BW20-2S
if (BandWidth == CHANNEL_WIDTH_20)
{
if ( (MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_5G_Diff[RFPath][TX_1S];
if ( (MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_5G_Diff[RFPath][TX_2S];
if ( (MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_5G_Diff[RFPath][TX_3S];
if ( (MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_5G_Diff[RFPath][TX_4S];
//DBG_871X("+PowerDiff 5G (RF-%c): (BW20-1S, BW20-2S, BW20-3S, BW20-4S) = (%d, %d, %d, %d)\n", ((RFPath==0)?'A':(RFPath==1)?'B':(RFPath==2)?'C':'D'),
// pHalData->BW20_5G_Diff[RFPath][TX_1S], pHalData->BW20_5G_Diff[RFPath][TX_2S],
// pHalData->BW20_5G_Diff[RFPath][TX_3S], pHalData->BW20_5G_Diff[RFPath][TX_4S]);
}
// BW40-1S, BW40-2S
else if (BandWidth == CHANNEL_WIDTH_40)
{
if ( (MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_5G_Diff[RFPath][TX_1S];
if ( (MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_5G_Diff[RFPath][TX_2S];
if ( (MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_5G_Diff[RFPath][TX_3S];
if ( (MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_5G_Diff[RFPath][TX_4S];
//DBG_871X("+PowerDiff 5G(RF-%c): (BW40-1S, BW40-2S) = (%d, %d, %d, %d)\n", ((RFPath==0)?'A':(RFPath==1)?'B':(RFPath==2)?'C':'D'),
// pHalData->BW40_5G_Diff[RFPath][TX_1S], pHalData->BW40_5G_Diff[RFPath][TX_2S],
// pHalData->BW40_5G_Diff[RFPath][TX_3S], pHalData->BW40_5G_Diff[RFPath][TX_4S]);
}
// BW80-1S, BW80-2S
else if (BandWidth== CHANNEL_WIDTH_80)
{
// <20121220, Kordan> Get the index of array "Index5G_BW80_Base".
for (i = 0; i < CENTER_CH_5G_80M_NUM; ++i)
if (center_ch_5g_80m[i] == Channel)
chnlIdx = i;
txPower = pHalData->Index5G_BW80_Base[RFPath][chnlIdx];
if ( (MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += + pHalData->BW80_5G_Diff[RFPath][TX_1S];
if ( (MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW80_5G_Diff[RFPath][TX_2S];
if ( (MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW80_5G_Diff[RFPath][TX_3S];
if ( (MGN_MCS23 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW80_5G_Diff[RFPath][TX_4S];
//DBG_871X("+PowerDiff 5G(RF-%c): (BW80-1S, BW80-2S, BW80-3S, BW80-4S) = (%d, %d, %d, %d)\n",((RFPath==0)?'A':(RFPath==1)?'B':(RFPath==2)?'C':'D'),
// pHalData->BW80_5G_Diff[RFPath][TX_1S], pHalData->BW80_5G_Diff[RFPath][TX_2S],
// pHalData->BW80_5G_Diff[RFPath][TX_3S], pHalData->BW80_5G_Diff[RFPath][TX_4S]);
}
}
return txPower;
}
s8
PHY_GetTxPowerTrackingOffset(
PADAPTER pAdapter,
u8 RFPath,
u8 Rate
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
s8 offset = 0;
if( pDM_Odm->RFCalibrateInfo.TxPowerTrackControl == _FALSE)
return offset;
if ((Rate == MGN_1M) ||(Rate == MGN_2M)||(Rate == MGN_5_5M)||(Rate == MGN_11M))
{
offset = pDM_Odm->RFCalibrateInfo.Remnant_CCKSwingIdx;
/*DBG_871X("+Remnant_CCKSwingIdx = 0x%x\n", RFPath, Rate, pRFCalibrateInfo->Remnant_CCKSwingIdx);*/
}
else
{
offset = pDM_Odm->RFCalibrateInfo.Remnant_OFDMSwingIdx[RFPath];
/*DBG_871X("+Remanant_OFDMSwingIdx[RFPath %u][Rate 0x%x] = 0x%x\n", RFPath, Rate, pRFCalibrateInfo->Remnant_OFDMSwingIdx[RFPath]); */
}
return offset;
}
u8
PHY_GetRateIndexOfTxPowerByRate(
IN u8 Rate
)
{
u8 index = 0;
switch ( Rate )
{
case MGN_1M: index = 0; break;
case MGN_2M: index = 1; break;
case MGN_5_5M: index = 2; break;
case MGN_11M: index = 3; break;
case MGN_6M: index = 4; break;
case MGN_9M: index = 5; break;
case MGN_12M: index = 6; break;
case MGN_18M: index = 7; break;
case MGN_24M: index = 8; break;
case MGN_36M: index = 9; break;
case MGN_48M: index = 10; break;
case MGN_54M: index = 11; break;
case MGN_MCS0: index = 12; break;
case MGN_MCS1: index = 13; break;
case MGN_MCS2: index = 14; break;
case MGN_MCS3: index = 15; break;
case MGN_MCS4: index = 16; break;
case MGN_MCS5: index = 17; break;
case MGN_MCS6: index = 18; break;
case MGN_MCS7: index = 19; break;
case MGN_MCS8: index = 20; break;
case MGN_MCS9: index = 21; break;
case MGN_MCS10: index = 22; break;
case MGN_MCS11: index = 23; break;
case MGN_MCS12: index = 24; break;
case MGN_MCS13: index = 25; break;
case MGN_MCS14: index = 26; break;
case MGN_MCS15: index = 27; break;
case MGN_MCS16: index = 28; break;
case MGN_MCS17: index = 29; break;
case MGN_MCS18: index = 30; break;
case MGN_MCS19: index = 31; break;
case MGN_MCS20: index = 32; break;
case MGN_MCS21: index = 33; break;
case MGN_MCS22: index = 34; break;
case MGN_MCS23: index = 35; break;
case MGN_MCS24: index = 36; break;
case MGN_MCS25: index = 37; break;
case MGN_MCS26: index = 38; break;
case MGN_MCS27: index = 39; break;
case MGN_MCS28: index = 40; break;
case MGN_MCS29: index = 41; break;
case MGN_MCS30: index = 42; break;
case MGN_MCS31: index = 43; break;
case MGN_VHT1SS_MCS0: index = 44; break;
case MGN_VHT1SS_MCS1: index = 45; break;
case MGN_VHT1SS_MCS2: index = 46; break;
case MGN_VHT1SS_MCS3: index = 47; break;
case MGN_VHT1SS_MCS4: index = 48; break;
case MGN_VHT1SS_MCS5: index = 49; break;
case MGN_VHT1SS_MCS6: index = 50; break;
case MGN_VHT1SS_MCS7: index = 51; break;
case MGN_VHT1SS_MCS8: index = 52; break;
case MGN_VHT1SS_MCS9: index = 53; break;
case MGN_VHT2SS_MCS0: index = 54; break;
case MGN_VHT2SS_MCS1: index = 55; break;
case MGN_VHT2SS_MCS2: index = 56; break;
case MGN_VHT2SS_MCS3: index = 57; break;
case MGN_VHT2SS_MCS4: index = 58; break;
case MGN_VHT2SS_MCS5: index = 59; break;
case MGN_VHT2SS_MCS6: index = 60; break;
case MGN_VHT2SS_MCS7: index = 61; break;
case MGN_VHT2SS_MCS8: index = 62; break;
case MGN_VHT2SS_MCS9: index = 63; break;
case MGN_VHT3SS_MCS0: index = 64; break;
case MGN_VHT3SS_MCS1: index = 65; break;
case MGN_VHT3SS_MCS2: index = 66; break;
case MGN_VHT3SS_MCS3: index = 67; break;
case MGN_VHT3SS_MCS4: index = 68; break;
case MGN_VHT3SS_MCS5: index = 69; break;
case MGN_VHT3SS_MCS6: index = 70; break;
case MGN_VHT3SS_MCS7: index = 71; break;
case MGN_VHT3SS_MCS8: index = 72; break;
case MGN_VHT3SS_MCS9: index = 73; break;
case MGN_VHT4SS_MCS0: index = 74; break;
case MGN_VHT4SS_MCS1: index = 75; break;
case MGN_VHT4SS_MCS2: index = 76; break;
case MGN_VHT4SS_MCS3: index = 77; break;
case MGN_VHT4SS_MCS4: index = 78; break;
case MGN_VHT4SS_MCS5: index = 79; break;
case MGN_VHT4SS_MCS6: index = 80; break;
case MGN_VHT4SS_MCS7: index = 81; break;
case MGN_VHT4SS_MCS8: index = 82; break;
case MGN_VHT4SS_MCS9: index = 83; break;
default:
DBG_871X("Invalid rate 0x%x in %s\n", Rate, __FUNCTION__ );
break;
};
return index;
}
s8
_PHY_GetTxPowerByRate(
IN PADAPTER pAdapter,
IN u8 Band,
IN u8 RFPath,
IN u8 TxNum,
IN u8 Rate
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
s8 value = 0;
u8 rateIndex = PHY_GetRateIndexOfTxPowerByRate(Rate);
if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) {
DBG_871X("Invalid band %d in %s\n", Band, __func__);
goto exit;
}
if (RFPath > ODM_RF_PATH_D) {
DBG_871X("Invalid RfPath %d in %s\n", RFPath, __func__);
goto exit;
}
if (TxNum >= RF_MAX_TX_NUM) {
DBG_871X("Invalid TxNum %d in %s\n", TxNum, __func__);
goto exit;
}
if (rateIndex >= TX_PWR_BY_RATE_NUM_RATE) {
DBG_871X("Invalid RateIndex %d in %s\n", rateIndex, __func__);
goto exit;
}
value = pHalData->TxPwrByRateOffset[Band][RFPath][TxNum][rateIndex];
exit:
return value;
}
s8
PHY_GetTxPowerByRate(
IN PADAPTER pAdapter,
IN u8 Band,
IN u8 RFPath,
IN u8 TxNum,
IN u8 Rate
)
{
if (!phy_is_tx_power_by_rate_needed(pAdapter))
return 0;
return _PHY_GetTxPowerByRate(pAdapter, Band, RFPath, TxNum, Rate);
}
VOID
PHY_SetTxPowerByRate(
IN PADAPTER pAdapter,
IN u8 Band,
IN u8 RFPath,
IN u8 TxNum,
IN u8 Rate,
IN s8 Value
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA( pAdapter );
u8 rateIndex = PHY_GetRateIndexOfTxPowerByRate( Rate );
if ( Band != BAND_ON_2_4G && Band != BAND_ON_5G )
{
DBG_871X("Invalid band %d in %s\n", Band, __FUNCTION__ );
return;
}
if ( RFPath > ODM_RF_PATH_D )
{
DBG_871X("Invalid RfPath %d in %s\n", RFPath, __FUNCTION__ );
return;
}
if ( TxNum >= RF_MAX_TX_NUM )
{
DBG_871X( "Invalid TxNum %d in %s\n", TxNum, __FUNCTION__ );
return;
}
if ( rateIndex >= TX_PWR_BY_RATE_NUM_RATE )
{
DBG_871X("Invalid RateIndex %d in %s\n", rateIndex, __FUNCTION__ );
return;
}
pHalData->TxPwrByRateOffset[Band][RFPath][TxNum][rateIndex] = Value;
}
VOID
PHY_SetTxPowerLevelByPath(
IN PADAPTER Adapter,
IN u8 channel,
IN u8 path
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
BOOLEAN bIsIn24G = (pHalData->CurrentBandType == BAND_ON_2_4G );
//if ( pMgntInfo->RegNByteAccess == 0 )
{
if ( bIsIn24G )
PHY_SetTxPowerIndexByRateSection( Adapter, path, channel, CCK );
PHY_SetTxPowerIndexByRateSection( Adapter, path, channel, OFDM );
PHY_SetTxPowerIndexByRateSection( Adapter, path, channel, HT_MCS0_MCS7 );
if (IS_HARDWARE_TYPE_JAGUAR(Adapter) || IS_HARDWARE_TYPE_8814A(Adapter))
PHY_SetTxPowerIndexByRateSection(Adapter, path, channel, VHT_1SSMCS0_1SSMCS9);
if (pHalData->NumTotalRFPath >= 2)
{
PHY_SetTxPowerIndexByRateSection( Adapter, path, channel, HT_MCS8_MCS15 );
if (IS_HARDWARE_TYPE_JAGUAR(Adapter) || IS_HARDWARE_TYPE_8814A(Adapter))
PHY_SetTxPowerIndexByRateSection(Adapter, path, channel, VHT_2SSMCS0_2SSMCS9);
if (IS_HARDWARE_TYPE_8814A(Adapter))
{
PHY_SetTxPowerIndexByRateSection( Adapter, path, channel, HT_MCS16_MCS23 );
PHY_SetTxPowerIndexByRateSection( Adapter, path, channel, VHT_3SSMCS0_3SSMCS9 );
}
}
}
}
VOID
PHY_SetTxPowerIndexByRateArray(
IN PADAPTER pAdapter,
IN u8 RFPath,
IN CHANNEL_WIDTH BandWidth,
IN u8 Channel,
IN u8* Rates,
IN u8 RateArraySize
)
{
u32 powerIndex = 0;
int i = 0;
for (i = 0; i < RateArraySize; ++i)
{
powerIndex = PHY_GetTxPowerIndex(pAdapter, RFPath, Rates[i], BandWidth, Channel);
PHY_SetTxPowerIndex(pAdapter, powerIndex, RFPath, Rates[i]);
}
}
s8
phy_GetWorldWideLimit(
s8* LimitTable
)
{
s8 min = LimitTable[0];
u8 i = 0;
for (i = 0; i < MAX_REGULATION_NUM; ++i) {
if (LimitTable[i] < min)
min = LimitTable[i];
}
return min;
}
s8
phy_GetChannelIndexOfTxPowerLimit(
IN u8 Band,
IN u8 Channel
)
{
s8 channelIndex = -1;
u8 i = 0;
if (Band == BAND_ON_2_4G) {
channelIndex = Channel - 1;
} else if (Band == BAND_ON_5G) {
for (i = 0; i < CENTER_CH_5G_ALL_NUM; ++i) {
if (center_ch_5g_all[i] == Channel)
channelIndex = i;
}
} else {
DBG_871X_LEVEL(_drv_always_, "Invalid Band %d in %s\n", Band, __func__);
}
if (channelIndex == -1)
DBG_871X_LEVEL(_drv_always_, "Invalid Channel %d of Band %d in %s\n", Channel, Band, __func__);
return channelIndex;
}
s8
PHY_GetTxPowerLimit(
IN PADAPTER Adapter,
IN u32 RegPwrTblSel,
IN BAND_TYPE Band,
IN CHANNEL_WIDTH Bandwidth,
IN u8 RfPath,
IN u8 DataRate,
IN u8 Channel
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
s16 band = -1, regulation = -1, bandwidth = -1,
rateSection = -1, channel = -1;
s8 powerLimit = MAX_POWER_INDEX;
if ( ( Adapter->registrypriv.RegEnableTxPowerLimit == 2 && pHalData->EEPROMRegulatory != 1 ) ||
Adapter->registrypriv.RegEnableTxPowerLimit == 0 )
return MAX_POWER_INDEX;
switch (RegPwrTblSel) {
case 1:
regulation = TXPWR_LMT_ETSI;
break;
case 2:
regulation = TXPWR_LMT_MKK;
break;
case 3:
regulation = TXPWR_LMT_FCC;
break;
case 4:
regulation = TXPWR_LMT_WW;
break;
default:
regulation = (Band == BAND_ON_2_4G) ? pHalData->Regulation2_4G : pHalData->Regulation5G;
break;
}
//DBG_871X("pMgntInfo->RegPwrTblSel %d, final regulation %d\n", Adapter->registrypriv.RegPwrTblSel, regulation );
if ( Band == BAND_ON_2_4G ) band = 0;
else if ( Band == BAND_ON_5G ) band = 1;
if ( Bandwidth == CHANNEL_WIDTH_20 ) bandwidth = 0;
else if ( Bandwidth == CHANNEL_WIDTH_40 ) bandwidth = 1;
else if ( Bandwidth == CHANNEL_WIDTH_80 ) bandwidth = 2;
else if ( Bandwidth == CHANNEL_WIDTH_160 ) bandwidth = 3;
switch ( DataRate )
{
case MGN_1M: case MGN_2M: case MGN_5_5M: case MGN_11M:
rateSection = 0;
break;
case MGN_6M: case MGN_9M: case MGN_12M: case MGN_18M:
case MGN_24M: case MGN_36M: case MGN_48M: case MGN_54M:
rateSection = 1;
break;
case MGN_MCS0: case MGN_MCS1: case MGN_MCS2: case MGN_MCS3:
case MGN_MCS4: case MGN_MCS5: case MGN_MCS6: case MGN_MCS7:
rateSection = 2;
break;
case MGN_MCS8: case MGN_MCS9: case MGN_MCS10: case MGN_MCS11:
case MGN_MCS12: case MGN_MCS13: case MGN_MCS14: case MGN_MCS15:
rateSection = 3;
break;
case MGN_MCS16: case MGN_MCS17: case MGN_MCS18: case MGN_MCS19:
case MGN_MCS20: case MGN_MCS21: case MGN_MCS22: case MGN_MCS23:
rateSection = 4;
break;
case MGN_MCS24: case MGN_MCS25: case MGN_MCS26: case MGN_MCS27:
case MGN_MCS28: case MGN_MCS29: case MGN_MCS30: case MGN_MCS31:
rateSection = 5;
break;
case MGN_VHT1SS_MCS0: case MGN_VHT1SS_MCS1: case MGN_VHT1SS_MCS2:
case MGN_VHT1SS_MCS3: case MGN_VHT1SS_MCS4: case MGN_VHT1SS_MCS5:
case MGN_VHT1SS_MCS6: case MGN_VHT1SS_MCS7: case MGN_VHT1SS_MCS8:
case MGN_VHT1SS_MCS9:
rateSection = 6;
break;
case MGN_VHT2SS_MCS0: case MGN_VHT2SS_MCS1: case MGN_VHT2SS_MCS2:
case MGN_VHT2SS_MCS3: case MGN_VHT2SS_MCS4: case MGN_VHT2SS_MCS5:
case MGN_VHT2SS_MCS6: case MGN_VHT2SS_MCS7: case MGN_VHT2SS_MCS8:
case MGN_VHT2SS_MCS9:
rateSection = 7;
break;
case MGN_VHT3SS_MCS0: case MGN_VHT3SS_MCS1: case MGN_VHT3SS_MCS2:
case MGN_VHT3SS_MCS3: case MGN_VHT3SS_MCS4: case MGN_VHT3SS_MCS5:
case MGN_VHT3SS_MCS6: case MGN_VHT3SS_MCS7: case MGN_VHT3SS_MCS8:
case MGN_VHT3SS_MCS9:
rateSection = 8;
break;
case MGN_VHT4SS_MCS0: case MGN_VHT4SS_MCS1: case MGN_VHT4SS_MCS2:
case MGN_VHT4SS_MCS3: case MGN_VHT4SS_MCS4: case MGN_VHT4SS_MCS5:
case MGN_VHT4SS_MCS6: case MGN_VHT4SS_MCS7: case MGN_VHT4SS_MCS8:
case MGN_VHT4SS_MCS9:
rateSection = 9;
break;
default:
DBG_871X("Wrong rate 0x%x\n", DataRate );
break;
}
if ( Band == BAND_ON_5G && rateSection == 0 )
DBG_871X("Wrong rate 0x%x: No CCK in 5G Band\n", DataRate );
// workaround for wrong index combination to obtain tx power limit,
// OFDM only exists in BW 20M
if ( rateSection == 1 )
bandwidth = 0;
// workaround for wrong index combination to obtain tx power limit,
// CCK table will only be given in BW 20M
if ( rateSection == 0 )
bandwidth = 0;
// workaround for wrong indxe combination to obtain tx power limit,
// HT on 80M will reference to HT on 40M
if ( ( rateSection == 2 || rateSection == 3 ) && Band == BAND_ON_5G && bandwidth == 2 ) {
bandwidth = 1;
}
if ( Band == BAND_ON_2_4G )
channel = phy_GetChannelIndexOfTxPowerLimit( BAND_ON_2_4G, Channel );
else if ( Band == BAND_ON_5G )
channel = phy_GetChannelIndexOfTxPowerLimit( BAND_ON_5G, Channel );
else if ( Band == BAND_ON_BOTH )
{
// BAND_ON_BOTH don't care temporarily
}
if ( band == -1 || regulation == -1 || bandwidth == -1 ||
rateSection == -1 || channel == -1 )
{
//DBG_871X("Wrong index value to access power limit table [band %d][regulation %d][bandwidth %d][rf_path %d][rate_section %d][chnlGroup %d]\n",
// band, regulation, bandwidth, RfPath, rateSection, channelGroup );
return MAX_POWER_INDEX;
}
if ( Band == BAND_ON_2_4G ) {
s8 limits[10] = {0}; u8 i = 0;
if (bandwidth >= MAX_2_4G_BANDWIDTH_NUM)
bandwidth = MAX_2_4G_BANDWIDTH_NUM - 1;
for (i = 0; i < MAX_REGULATION_NUM; ++i)
limits[i] = pHalData->TxPwrLimit_2_4G[i][bandwidth][rateSection][channel][RfPath];
powerLimit = (regulation == TXPWR_LMT_WW) ? phy_GetWorldWideLimit(limits) :
pHalData->TxPwrLimit_2_4G[regulation][bandwidth][rateSection][channel][RfPath];
} else if ( Band == BAND_ON_5G ) {
s8 limits[10] = {0}; u8 i = 0;
for (i = 0; i < MAX_REGULATION_NUM; ++i)
limits[i] = pHalData->TxPwrLimit_5G[i][bandwidth][rateSection][channel][RfPath];
powerLimit = (regulation == TXPWR_LMT_WW) ? phy_GetWorldWideLimit(limits) :
pHalData->TxPwrLimit_5G[regulation][bandwidth][rateSection][channel][RfPath];
} else
DBG_871X("No power limit table of the specified band\n" );
// combine 5G VHT & HT rate
// 5G 20M and 40M HT and VHT can cross reference
/*
if ( Band == BAND_ON_5G && powerLimit == MAX_POWER_INDEX ) {
if ( bandwidth == 0 || bandwidth == 1 ) {
RT_TRACE( COMP_INIT, DBG_LOUD, ( "No power limit table of the specified band %d, bandwidth %d, ratesection %d, rf path %d\n",
band, bandwidth, rateSection, RfPath ) );
if ( rateSection == 2 )
powerLimit = pHalData->TxPwrLimit_5G[regulation]
[bandwidth][4][channelGroup][RfPath];
else if ( rateSection == 4 )
powerLimit = pHalData->TxPwrLimit_5G[regulation]
[bandwidth][2][channelGroup][RfPath];
else if ( rateSection == 3 )
powerLimit = pHalData->TxPwrLimit_5G[regulation]
[bandwidth][5][channelGroup][RfPath];
else if ( rateSection == 5 )
powerLimit = pHalData->TxPwrLimit_5G[regulation]
[bandwidth][3][channelGroup][RfPath];
}
}
*/
//DBG_871X("TxPwrLmt[Regulation %d][Band %d][BW %d][RFPath %d][Rate 0x%x][Chnl %d] = %d\n",
// regulation, pHalData->CurrentBandType, Bandwidth, RfPath, DataRate, Channel, powerLimit);
return powerLimit;
}
VOID
phy_CrossReferenceHTAndVHTTxPowerLimit(
IN PADAPTER pAdapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
u8 regulation, bw, channel, rs, ref_rs;
int ht_ref_vht_5g_20_40 = 0;
int vht_ref_ht_5g_20_40 = 0;
int ht_has_ref_5g_20_40 = 0;
int vht_has_ref_5g_20_40 = 0;
pHalData->tx_pwr_lmt_5g_20_40_ref = 0;
for (regulation = 0; regulation < MAX_REGULATION_NUM; ++regulation) {
for (bw = 0; bw < MAX_5G_BANDWIDTH_NUM; ++bw) {
for (channel = 0; channel < CENTER_CH_5G_ALL_NUM; ++channel) {
for (rs = 0; rs < MAX_RATE_SECTION_NUM; ++rs) {
/* 5G 20M 40M VHT and HT can cross reference */
if (bw == CHANNEL_WIDTH_20 || bw == CHANNEL_WIDTH_40) {
if (rs == HT_1SS)
ref_rs = VHT_1SS;
else if (rs == HT_2SS)
ref_rs = VHT_2SS;
else if (rs == HT_3SS)
ref_rs = VHT_3SS;
else if (rs == HT_4SS)
ref_rs = VHT_4SS;
else if (rs == VHT_1SS)
ref_rs = HT_1SS;
else if (rs == VHT_2SS)
ref_rs = HT_2SS;
else if (rs == VHT_3SS)
ref_rs = HT_3SS;
else if (rs == VHT_4SS)
ref_rs = HT_4SS;
else
continue;
if (pHalData->TxPwrLimit_5G[regulation][bw][ref_rs][channel][RF_PATH_A] == MAX_POWER_INDEX)
continue;
if (IS_HT_RATE_SECTION(rs))
ht_has_ref_5g_20_40++;
else if (IS_VHT_RATE_SECTION(rs))
vht_has_ref_5g_20_40++;
else
continue;
if (pHalData->TxPwrLimit_5G[regulation][bw][rs][channel][RF_PATH_A] != MAX_POWER_INDEX)
continue;
if (IS_HT_RATE_SECTION(rs) && IS_VHT_RATE_SECTION(ref_rs))
ht_ref_vht_5g_20_40++;
else if (IS_VHT_RATE_SECTION(rs) && IS_HT_RATE_SECTION(ref_rs))
vht_ref_ht_5g_20_40++;
if (0)
DBG_871X("reg:%u, bw:%u, ch:%u, %s ref %s\n"
, regulation, bw, channel
, rate_section_str(rs), rate_section_str(ref_rs));
pHalData->TxPwrLimit_5G[regulation][bw][rs][channel][RF_PATH_A] =
pHalData->TxPwrLimit_5G[regulation][bw][ref_rs][channel][RF_PATH_A];
}
}
}
}
}
if (0) {
DBG_871X("ht_ref_vht_5g_20_40:%d, ht_has_ref_5g_20_40:%d\n", ht_ref_vht_5g_20_40, ht_has_ref_5g_20_40);
DBG_871X("vht_ref_hht_5g_20_40:%d, vht_has_ref_5g_20_40:%d\n", vht_ref_ht_5g_20_40, vht_has_ref_5g_20_40);
}
/* 5G 20M&40M HT all come from VHT*/
if (ht_ref_vht_5g_20_40 && ht_has_ref_5g_20_40 == ht_ref_vht_5g_20_40)
pHalData->tx_pwr_lmt_5g_20_40_ref |= TX_PWR_LMT_REF_HT_FROM_VHT;
/* 5G 20M&40M VHT all come from HT*/
if (vht_ref_ht_5g_20_40 && vht_has_ref_5g_20_40 == vht_ref_ht_5g_20_40)
pHalData->tx_pwr_lmt_5g_20_40_ref |= TX_PWR_LMT_REF_VHT_FROM_HT;
}
VOID
PHY_ConvertTxPowerLimitToPowerIndex(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 base;
u8 regulation, bw, channel, rateSection;
s8 tempValue = 0, tempPwrLmt = 0;
u8 rfPath = 0;
if (pHalData->odmpriv.PhyRegPgValueType != PHY_REG_PG_EXACT_VALUE) {
rtw_warn_on(1);
return;
}
phy_CrossReferenceHTAndVHTTxPowerLimit(Adapter);
for (regulation = 0; regulation < MAX_REGULATION_NUM; ++regulation) {
for (bw = 0; bw < MAX_2_4G_BANDWIDTH_NUM; ++bw) {
for (channel = 0; channel < CENTER_CH_2G_NUM; ++channel) {
for (rateSection = CCK; rateSection <= HT_4SS; ++rateSection) {
tempPwrLmt = pHalData->TxPwrLimit_2_4G[regulation][bw][rateSection][channel][RF_PATH_A];
if (tempPwrLmt != MAX_POWER_INDEX) {
for (rfPath = RF_PATH_A; rfPath < MAX_RF_PATH; ++rfPath) {
base = phy_get_target_tx_power(Adapter, BAND_ON_2_4G, rfPath, rateSection);
tempValue = tempPwrLmt - base;
pHalData->TxPwrLimit_2_4G[regulation][bw][rateSection][channel][rfPath] = tempValue;
}
}
}
}
}
}
if (IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(Adapter)) {
for (regulation = 0; regulation < MAX_REGULATION_NUM; ++regulation) {
for (bw = 0; bw < MAX_5G_BANDWIDTH_NUM; ++bw) {
for (channel = 0; channel < CENTER_CH_5G_ALL_NUM; ++channel) {
for (rateSection = OFDM; rateSection <= VHT_4SS; ++rateSection) {
tempPwrLmt = pHalData->TxPwrLimit_5G[regulation][bw][rateSection][channel][RF_PATH_A];
if (tempPwrLmt != MAX_POWER_INDEX) {
for (rfPath = RF_PATH_A; rfPath < MAX_RF_PATH; ++rfPath) {
base = phy_get_target_tx_power(Adapter, BAND_ON_5G, rfPath, rateSection);
tempValue = tempPwrLmt - base;
pHalData->TxPwrLimit_5G[regulation][bw][rateSection][channel][rfPath] = tempValue;
}
}
}
}
}
}
}
}
/*
* PHY_InitTxPowerLimit - Set all hal_data.TxPwrLimit_2_4G, TxPwrLimit_5G array to MAX_POWER_INDEX
*/
VOID
PHY_InitTxPowerLimit(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 i, j, k, l, m;
for (i = 0; i < MAX_REGULATION_NUM; ++i)
for (j = 0; j < MAX_2_4G_BANDWIDTH_NUM; ++j)
for (k = 0; k < MAX_RATE_SECTION_NUM; ++k)
for (m = 0; m < CENTER_CH_2G_NUM; ++m)
for (l = 0; l < MAX_RF_PATH; ++l)
pHalData->TxPwrLimit_2_4G[i][j][k][m][l] = MAX_POWER_INDEX;
for (i = 0; i < MAX_REGULATION_NUM; ++i)
for (j = 0; j < MAX_5G_BANDWIDTH_NUM; ++j)
for (k = 0; k < MAX_RATE_SECTION_NUM; ++k)
for (m = 0; m < CENTER_CH_5G_ALL_NUM; ++m)
for (l = 0; l < MAX_RF_PATH; ++l)
pHalData->TxPwrLimit_5G[i][j][k][m][l] = MAX_POWER_INDEX;
}
/*
* PHY_SetTxPowerLimit - Parsing TX power limit from phydm array, called by odm_ConfigBB_TXPWR_LMT_XXX in phydm
*/
VOID
PHY_SetTxPowerLimit(
IN PDM_ODM_T pDM_Odm,
IN u8 *Regulation,
IN u8 *Band,
IN u8 *Bandwidth,
IN u8 *RateSection,
IN u8 *RfPath,
IN u8 *Channel,
IN u8 *PowerLimit
)
{
PADAPTER Adapter = pDM_Odm->Adapter;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 regulation = 0, bandwidth = 0, rateSection = 0, channel;
s8 powerLimit = 0, prevPowerLimit, channelIndex;
if (0)
DBG_871X("Index of power limit table [band %s][regulation %s][bw %s][rate section %s][rf path %s][chnl %s][val %s]\n"
, Band, Regulation, Bandwidth, RateSection, RfPath, Channel, PowerLimit);
if (GetU1ByteIntegerFromStringInDecimal((s8 *)Channel, &channel) == _FALSE
|| GetU1ByteIntegerFromStringInDecimal((s8 *)PowerLimit, &powerLimit) == _FALSE
){
DBG_871X_LEVEL(_drv_always_, "Illegal index of power limit table [ch %s][val %s]\n", Channel, PowerLimit);
return;
}
powerLimit = powerLimit > MAX_POWER_INDEX ? MAX_POWER_INDEX : powerLimit;
if (eqNByte(Regulation, (u8 *)("FCC"), 3))
regulation = TXPWR_LMT_FCC;
else if (eqNByte(Regulation, (u8 *)("MKK"), 3))
regulation = TXPWR_LMT_MKK;
else if (eqNByte(Regulation, (u8 *)("ETSI"), 4))
regulation = TXPWR_LMT_ETSI;
else if (eqNByte(Regulation, (u8 *)("WW13"), 4))
regulation = TXPWR_LMT_WW;
else {
DBG_871X_LEVEL(_drv_always_, "unknown regulation:%s", Regulation);
return;
}
if (eqNByte(RateSection, (u8 *)("CCK"), 3) && eqNByte(RfPath, (u8 *)("1T"), 2))
rateSection = CCK;
else if (eqNByte(RateSection, (u8 *)("OFDM"), 4) && eqNByte(RfPath, (u8 *)("1T"), 2))
rateSection = OFDM;
else if (eqNByte(RateSection, (u8 *)("HT"), 2) && eqNByte(RfPath, (u8 *)("1T"), 2))
rateSection = HT_1SS;
else if (eqNByte(RateSection, (u8 *)("HT"), 2) && eqNByte(RfPath, (u8 *)("2T"), 2))
rateSection = HT_2SS;
else if (eqNByte(RateSection, (u8 *)("HT"), 2) && eqNByte(RfPath, (u8 *)("3T"), 2))
rateSection = HT_3SS;
else if (eqNByte(RateSection, (u8 *)("HT"), 2) && eqNByte(RfPath, (u8 *)("4T"), 2))
rateSection = HT_4SS;
else if (eqNByte(RateSection, (u8 *)("VHT"), 3) && eqNByte(RfPath, (u8 *)("1T"), 2))
rateSection = VHT_1SS;
else if (eqNByte(RateSection, (u8 *)("VHT"), 3) && eqNByte(RfPath, (u8 *)("2T"), 2))
rateSection = VHT_2SS;
else if (eqNByte(RateSection, (u8 *)("VHT"), 3) && eqNByte(RfPath, (u8 *)("3T"), 2))
rateSection = VHT_3SS;
else if (eqNByte(RateSection, (u8 *)("VHT"), 3) && eqNByte(RfPath, (u8 *)("4T"), 2))
rateSection = VHT_4SS;
else {
DBG_871X_LEVEL(_drv_always_, "Wrong rate section: (%s,%s)\n", RateSection, RfPath);
return;
}
if (eqNByte(Bandwidth, (u8 *)("20M"), 3))
bandwidth = CHANNEL_WIDTH_20;
else if (eqNByte(Bandwidth, (u8 *)("40M"), 3))
bandwidth = CHANNEL_WIDTH_40;
else if (eqNByte(Bandwidth, (u8 *)("80M"), 3))
bandwidth = CHANNEL_WIDTH_80;
else {
DBG_871X_LEVEL(_drv_always_, "unknown bandwidth: %s\n", Bandwidth);
return;
}
if (eqNByte(Band, (u8 *)("2.4G"), 4)) {
channelIndex = phy_GetChannelIndexOfTxPowerLimit(BAND_ON_2_4G, channel);
if (channelIndex == -1) {
DBG_871X_LEVEL(_drv_always_, "unsupported channel: %d at 2.4G\n", channel);
return;
}
if (bandwidth >= MAX_2_4G_BANDWIDTH_NUM) {
DBG_871X_LEVEL(_drv_always_, "unsupported bandwidth: %s at 2.4G\n", Bandwidth);
return;
}
prevPowerLimit = pHalData->TxPwrLimit_2_4G[regulation][bandwidth][rateSection][channelIndex][RF_PATH_A];
if (prevPowerLimit != MAX_POWER_INDEX)
DBG_871X_LEVEL(_drv_always_, "duplicate tx power limit combination [band %s][regulation %s][bw %s][rate section %s][rf path %s][chnl %s]\n"
, Band, Regulation, Bandwidth, RateSection, RfPath, Channel);
if (powerLimit < prevPowerLimit)
pHalData->TxPwrLimit_2_4G[regulation][bandwidth][rateSection][channelIndex][RF_PATH_A] = powerLimit;
if (0)
DBG_871X("2.4G Band value : [regulation %d][bw %d][rate_section %d][chnl %d][val %d]\n"
, regulation, bandwidth, rateSection, channelIndex, pHalData->TxPwrLimit_2_4G[regulation][bandwidth][rateSection][channelIndex][ODM_RF_PATH_A]);
} else if (eqNByte(Band, (u8 *)("5G"), 2)) {
channelIndex = phy_GetChannelIndexOfTxPowerLimit(BAND_ON_5G, channel);
if (channelIndex == -1) {
DBG_871X_LEVEL(_drv_always_, "unsupported channel: %d at 5G\n", channel);
return;
}
prevPowerLimit = pHalData->TxPwrLimit_5G[regulation][bandwidth][rateSection][channelIndex][RF_PATH_A];
if (prevPowerLimit != MAX_POWER_INDEX)
DBG_871X_LEVEL(_drv_always_, "duplicate tx power limit combination [band %s][regulation %s][bw %s][rate section %s][rf path %s][chnl %s]\n"
, Band, Regulation, Bandwidth, RateSection, RfPath, Channel);
if (powerLimit < prevPowerLimit)
pHalData->TxPwrLimit_5G[regulation][bandwidth][rateSection][channelIndex][RF_PATH_A] = powerLimit;
if (0)
DBG_871X("5G Band value : [regulation %d][bw %d][rate_section %d][chnl %d][val %d]\n"
, regulation, bandwidth, rateSection, channel, pHalData->TxPwrLimit_5G[regulation][bandwidth][rateSection][channelIndex][RF_PATH_A]);
} else {
DBG_871X_LEVEL(_drv_always_, "Cannot recognize the band info in %s\n", Band);
return;
}
}
u8
PHY_GetTxPowerIndex(
IN PADAPTER pAdapter,
IN u8 RFPath,
IN u8 Rate,
IN CHANNEL_WIDTH BandWidth,
IN u8 Channel
)
{
u8 txPower = 0x3E;
if (IS_HARDWARE_TYPE_8814A(pAdapter)) {
#if (RTL8814A_SUPPORT == 1)
txPower = PHY_GetTxPowerIndex_8814A(pAdapter, RFPath, Rate, BandWidth, Channel);
#endif
} else if (IS_HARDWARE_TYPE_JAGUAR(pAdapter)) {
#if ((RTL8812A_SUPPORT == 1) || (RTL8821A_SUPPORT == 1))
txPower = PHY_GetTxPowerIndex_8812A(pAdapter, RFPath, Rate, BandWidth, Channel);
#endif
}
else if (IS_HARDWARE_TYPE_8723B(pAdapter)) {
#if (RTL8723B_SUPPORT == 1)
txPower = PHY_GetTxPowerIndex_8723B(pAdapter, RFPath, Rate, BandWidth, Channel);
#endif
}
else if (IS_HARDWARE_TYPE_8703B(pAdapter)) {
#if (RTL8703B_SUPPORT == 1)
txPower = PHY_GetTxPowerIndex_8703B(pAdapter, RFPath, Rate, BandWidth, Channel);
#endif
}
else if (IS_HARDWARE_TYPE_8192E(pAdapter)) {
#if (RTL8192E_SUPPORT==1)
txPower = PHY_GetTxPowerIndex_8192E(pAdapter, RFPath, Rate, BandWidth, Channel);
#endif
}
else if (IS_HARDWARE_TYPE_8188E(pAdapter)) {
#if (RTL8188E_SUPPORT==1)
txPower = PHY_GetTxPowerIndex_8188E(pAdapter, RFPath, Rate, BandWidth, Channel);
#endif
} else if (IS_HARDWARE_TYPE_8188F(pAdapter)) {
#if (RTL8188F_SUPPORT == 1)
txPower = PHY_GetTxPowerIndex_8188F(pAdapter, RFPath, Rate, BandWidth, Channel);
#endif
}
return txPower;
}
VOID
PHY_SetTxPowerIndex(
IN PADAPTER pAdapter,
IN u32 PowerIndex,
IN u8 RFPath,
IN u8 Rate
)
{
if (IS_HARDWARE_TYPE_8814A(pAdapter)) {
#if (RTL8814A_SUPPORT == 1)
PHY_SetTxPowerIndex_8814A(pAdapter, PowerIndex, RFPath, Rate);
#endif
}
else if (IS_HARDWARE_TYPE_JAGUAR(pAdapter)) {
#if ((RTL8812A_SUPPORT==1) || (RTL8821A_SUPPORT == 1))
PHY_SetTxPowerIndex_8812A( pAdapter, PowerIndex, RFPath, Rate );
#endif
}
else if (IS_HARDWARE_TYPE_8723B(pAdapter)) {
#if (RTL8723B_SUPPORT==1)
PHY_SetTxPowerIndex_8723B( pAdapter, PowerIndex, RFPath, Rate );
#endif
}
else if (IS_HARDWARE_TYPE_8703B(pAdapter)) {
#if (RTL8703B_SUPPORT==1)
PHY_SetTxPowerIndex_8703B( pAdapter, PowerIndex, RFPath, Rate );
#endif
}
else if (IS_HARDWARE_TYPE_8192E(pAdapter)) {
#if (RTL8192E_SUPPORT==1)
PHY_SetTxPowerIndex_8192E( pAdapter, PowerIndex, RFPath, Rate );
#endif
}
else if (IS_HARDWARE_TYPE_8188E(pAdapter)) {
#if (RTL8188E_SUPPORT==1)
PHY_SetTxPowerIndex_8188E( pAdapter, PowerIndex, RFPath, Rate );
#endif
} else if (IS_HARDWARE_TYPE_8188F(pAdapter)) {
#if (RTL8188F_SUPPORT == 1)
PHY_SetTxPowerIndex_8188F(pAdapter, PowerIndex, RFPath, Rate);
#endif
}
}
bool phy_is_tx_power_limit_needed(_adapter *adapter)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
struct registry_priv *regsty = dvobj_to_regsty(adapter_to_dvobj(adapter));
if (regsty->RegEnableTxPowerLimit == 1
|| (regsty->RegEnableTxPowerLimit == 2 && hal_data->EEPROMRegulatory == 1))
return _TRUE;
return _FALSE;
}
bool phy_is_tx_power_by_rate_needed(_adapter *adapter)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
struct registry_priv *regsty = dvobj_to_regsty(adapter_to_dvobj(adapter));
if (regsty->RegEnableTxPowerByRate == 1
|| (regsty->RegEnableTxPowerByRate == 2 && hal_data->EEPROMRegulatory != 2))
return _TRUE;
return _FALSE;
}
int phy_load_tx_power_by_rate(_adapter *adapter, const char *hal_file_name, u8 force)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
struct registry_priv *regsty = dvobj_to_regsty(adapter_to_dvobj(adapter));
int ret = _FAIL;
if (!force
&& !rtw_is_phy_file_readable(hal_file_name)
&& hal_data->txpwr_by_rate_loaded == 1
&& hal_data->txpwr_by_rate_from_file == 0
) {
/* No file and already load default(compile-time) table */
ret = _SUCCESS;
goto exit;
}
hal_data->txpwr_by_rate_loaded = 0;
PHY_InitTxPowerByRate(adapter);
/* tx power limit is based on tx power by rate */
hal_data->txpwr_limit_loaded = 0;
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (rtw_is_phy_file_readable(hal_file_name)
&& phy_ConfigBBWithPgParaFile(adapter, hal_file_name) == _SUCCESS
) {
hal_data->txpwr_by_rate_from_file = 1;
goto post_hdl;
}
#endif
#ifdef CONFIG_EMBEDDED_FWIMG
if (HAL_STATUS_SUCCESS == ODM_ConfigBBWithHeaderFile(&hal_data->odmpriv, CONFIG_BB_PHY_REG_PG)) {
DBG_871X("default power by rate loaded\n");
hal_data->txpwr_by_rate_from_file = 0;
goto post_hdl;
}
#endif
DBG_871X_LEVEL(_drv_err_, "%s():Read Tx power by rate fail\n", __func__);
goto exit;
post_hdl:
if (hal_data->odmpriv.PhyRegPgValueType != PHY_REG_PG_EXACT_VALUE) {
rtw_warn_on(1);
goto exit;
}
PHY_TxPowerByRateConfiguration(adapter);
hal_data->txpwr_by_rate_loaded = 1;
ret = _SUCCESS;
exit:
return ret;
}
int phy_load_tx_power_limit(_adapter *adapter, const char *hal_file_name, u8 force)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
struct registry_priv *regsty = dvobj_to_regsty(adapter_to_dvobj(adapter));
int ret = _FAIL;
if (!force
&& !rtw_is_phy_file_readable(hal_file_name)
&& hal_data->txpwr_by_rate_loaded == 1
&& hal_data->txpwr_by_rate_from_file == 0
) {
/* No file and already load default(compile-time) table */
ret = _SUCCESS;
goto exit;
}
hal_data->txpwr_limit_loaded = 0;
PHY_InitTxPowerLimit(adapter);
if (!hal_data->txpwr_by_rate_loaded && regsty->target_tx_pwr_valid != _TRUE) {
DBG_871X_LEVEL(_drv_err_, "%s():Read Tx power limit before target tx power is specify\n", __func__);
goto exit;
}
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (rtw_is_phy_file_readable(hal_file_name)
&& PHY_ConfigRFWithPowerLimitTableParaFile(adapter, hal_file_name) == _SUCCESS
) {
hal_data->txpwr_limit_from_file = 1;
goto post_hdl;
}
#endif
#ifdef CONFIG_EMBEDDED_FWIMG
if (HAL_STATUS_SUCCESS == ODM_ConfigRFWithHeaderFile(&hal_data->odmpriv, CONFIG_RF_TXPWR_LMT, (ODM_RF_RADIO_PATH_E)0)) {
DBG_871X("default power limit loaded\n");
hal_data->txpwr_limit_from_file = 0;
goto post_hdl;
}
#endif
DBG_871X_LEVEL(_drv_err_, "%s():Read Tx power limit fail\n", __func__);
goto exit;
post_hdl:
PHY_ConvertTxPowerLimitToPowerIndex(adapter);
hal_data->txpwr_limit_loaded = 1;
ret = _SUCCESS;
exit:
return ret;
}
const char *hal_phy_reg_pg_str(_adapter *adapter)
{
u8 interface_type = 0;
const char *str = NULL;
interface_type = rtw_get_intf_type(adapter);
switch (rtw_get_chip_type(adapter)) {
#ifdef CONFIG_RTL8723B
case RTL8723B:
str = RTL8723B_PHY_REG_PG;
break;
#endif
#ifdef CONFIG_RTL8703B
case RTL8703B:
str = RTL8703B_PHY_REG_PG;
break;
#endif
#ifdef CONFIG_RTL8188E
case RTL8188E:
str = RTL8188E_PHY_REG_PG;
break;
#endif
#ifdef CONFIG_RTL8188F
case RTL8188F:
str = RTL8188F_PHY_REG_PG;
break;
#endif
#ifdef CONFIG_RTL8812A
case RTL8812:
str = RTL8812_PHY_REG_PG;
break;
#endif
#ifdef CONFIG_RTL8821A
case RTL8821:
str = RTL8821_PHY_REG_PG;
break;
#endif
#ifdef CONFIG_RTL8192E
case RTL8192E:
str = RTL8192E_PHY_REG_PG;
break;
#endif
#ifdef CONFIG_RTL8814A
case RTL8814A:
str = RTL8814A_PHY_REG_PG;
break;
#endif
}
if (str == NULL) {
DBG_871X_LEVEL(_drv_err_, "%s: unknown chip_type:%u\n"
, __func__, rtw_get_chip_type(adapter));
}
return str;
}
const char *hal_txpwr_lmt_str(_adapter *adapter)
{
u8 interface_type = 0;
const char *str = NULL;
interface_type = rtw_get_intf_type(adapter);
switch (rtw_get_chip_type(adapter)) {
#ifdef CONFIG_RTL8723B
case RTL8723B:
str = RTL8723B_TXPWR_LMT;
break;
#endif
#ifdef CONFIG_RTL8703B
case RTL8703B:
str = RTL8703B_TXPWR_LMT;
break;
#endif
#ifdef CONFIG_RTL8188E
case RTL8188E:
str = RTL8188E_TXPWR_LMT;
break;
#endif
#ifdef CONFIG_RTL8188F
case RTL8188F:
str = RTL8188F_TXPWR_LMT;
break;
#endif
#ifdef CONFIG_RTL8812A
case RTL8812:
str = RTL8812_TXPWR_LMT;
break;
#endif
#ifdef CONFIG_RTL8821A
case RTL8821:
str = RTL8821_TXPWR_LMT;
break;
#endif
#ifdef CONFIG_RTL8192E
case RTL8192E:
str = RTL8192E_TXPWR_LMT;
break;
#endif
#ifdef CONFIG_RTL8814A
case RTL8814A:
str = RTL8814A_TXPWR_LMT;
break;
#endif
}
if (str == NULL) {
DBG_871X_LEVEL(_drv_err_, "%s: unknown chip_type:%u\n"
, __func__, rtw_get_chip_type(adapter));
}
return str;
}
void phy_load_tx_power_ext_info(_adapter *adapter, u8 chk_file, u8 force)
{
struct registry_priv *regsty = adapter_to_regsty(adapter);
const char *str = NULL;
/* check registy target tx power */
regsty->target_tx_pwr_valid = rtw_regsty_chk_target_tx_power_valid(adapter);
/* power by rate and limit */
if (phy_is_tx_power_by_rate_needed(adapter)
|| (phy_is_tx_power_limit_needed(adapter) && regsty->target_tx_pwr_valid != _TRUE)
) {
str = chk_file ? hal_phy_reg_pg_str(adapter) : NULL;
phy_load_tx_power_by_rate(adapter, str, force);
}
if (phy_is_tx_power_limit_needed(adapter)) {
str = chk_file ? hal_txpwr_lmt_str(adapter) : NULL;
phy_load_tx_power_limit(adapter, str, force);
}
}
inline void phy_reload_tx_power_ext_info(_adapter *adapter)
{
phy_load_tx_power_ext_info(adapter, 1, 1);
}
inline void phy_reload_default_tx_power_ext_info(_adapter *adapter)
{
phy_load_tx_power_ext_info(adapter, 0, 1);
}
void dump_tx_power_ext_info(void *sel, _adapter *adapter)
{
struct registry_priv *regsty = adapter_to_regsty(adapter);
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
if (phy_is_tx_power_by_rate_needed(adapter)
|| (phy_is_tx_power_limit_needed(adapter) && regsty->target_tx_pwr_valid != _TRUE))
DBG_871X_SEL_NL(sel, "target_tx_power: from powr by rate\n");
else if (regsty->target_tx_pwr_valid == _TRUE)
DBG_871X_SEL_NL(sel, "target_tx_power: from registry\n");
else
DBG_871X_SEL_NL(sel, "target_tx_power: unavailable\n");
DBG_871X_SEL_NL(sel, "tx_power_by_rate: %s, %s, %s\n"
, phy_is_tx_power_by_rate_needed(adapter) ? "enabled" : "disabled"
, hal_data->txpwr_by_rate_loaded ? "loaded" : "unloaded"
, hal_data->txpwr_by_rate_from_file ? "file" : "default"
);
DBG_871X_SEL_NL(sel, "tx_power_limit: %s, %s, %s\n"
, phy_is_tx_power_limit_needed(adapter) ? "enabled" : "disabled"
, hal_data->txpwr_limit_loaded ? "loaded" : "unloaded"
, hal_data->txpwr_limit_from_file ? "file" : "default"
);
}
void dump_target_tx_power(void *sel, _adapter *adapter)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
struct registry_priv *regsty = adapter_to_regsty(adapter);
int path, tx_num, band, rs;
u8 target;
for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) {
if (!hal_is_band_support(adapter, band))
continue;
for (path = 0; path < RF_PATH_MAX; path++) {
if (path >= hal_data->NumTotalRFPath)
break;
DBG_871X_SEL_NL(sel, "[%s][%c]\n", band_str(band), rf_path_char(path));
for (rs = 0; rs < RATE_SECTION_NUM; rs++) {
tx_num = rate_section_to_tx_num(rs);
if (tx_num >= hal_spec->nss_num)
continue;
if (band == BAND_ON_5G && IS_CCK_RATE_SECTION(rs))
continue;
if (IS_VHT_RATE_SECTION(rs) && !IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(adapter))
continue;
target = phy_get_target_tx_power(adapter, band, path, rs);
if (target % 2)
DBG_871X_SEL(sel, "%7s: %2d.5\n", rate_section_str(rs), target / 2);
else
DBG_871X_SEL(sel, "%7s: %4d\n", rate_section_str(rs), target / 2);
}
}
}
exit:
return;
}
void dump_tx_power_by_rate(void *sel, _adapter *adapter)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
int path, tx_num, band, n, rs;
u8 rate_num, max_rate_num, base;
s8 by_rate_offset;
for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) {
if (!hal_is_band_support(adapter, band))
continue;
for (path = 0; path < RF_PATH_MAX; path++) {
if (path >= hal_data->NumTotalRFPath)
break;
DBG_871X_SEL_NL(sel, "[%s][%c]\n", band_str(band), rf_path_char(path));
for (rs = 0; rs < RATE_SECTION_NUM; rs++) {
tx_num = rate_section_to_tx_num(rs);
if (tx_num >= hal_spec->nss_num)
continue;
if (band == BAND_ON_5G && IS_CCK_RATE_SECTION(rs))
continue;
if (IS_VHT_RATE_SECTION(rs) && !IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(adapter))
continue;
if (IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(adapter))
max_rate_num = 10;
else
max_rate_num = 8;
rate_num = rate_section_rate_num(rs);
base = PHY_GetTxPowerByRateBase(adapter, band, path, tx_num, rs);
DBG_871X_SEL_NL(sel, "%7s: ", rate_section_str(rs));
/* dump power by rate in db */
for (n = rate_num - 1; n >= 0; n--) {
by_rate_offset = PHY_GetTxPowerByRate(adapter, band, path, tx_num, rates_by_sections[rs].rates[n]);
if ((base + by_rate_offset) % 2)
DBG_871X_SEL(sel, "%2d.5 ", (base + by_rate_offset) / 2);
else
DBG_871X_SEL(sel, "%4d ", (base + by_rate_offset) / 2);
}
for (n = 0; n < max_rate_num - rate_num; n++)
DBG_871X_SEL(sel, "%4s ", "");
DBG_871X_SEL(sel, "|");
/* dump power by rate in offset */
for (n = rate_num - 1; n >= 0; n--) {
by_rate_offset = PHY_GetTxPowerByRate(adapter, band, path, tx_num, rates_by_sections[rs].rates[n]);
DBG_871X_SEL(sel, "%3d ", by_rate_offset);
}
DBG_871X_SEL_NL(sel, "\n");
}
}
}
}
void dump_tx_power_limit(void *sel, _adapter *adapter)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
struct registry_priv *regsty = dvobj_to_regsty(adapter_to_dvobj(adapter));
int bw, band, ch_num, rs, i, path;
u8 ch, n, rd;
if (IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(adapter))
DBG_871X_SEL_NL(sel, "tx_pwr_lmt_5g_20_40_ref:0x%02x\n", hal_data->tx_pwr_lmt_5g_20_40_ref);
for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) {
if (!hal_is_band_support(adapter, band))
continue;
rd = (band == BAND_ON_2_4G ? hal_data->Regulation2_4G : hal_data->Regulation5G);
for (bw = 0; bw < MAX_5G_BANDWIDTH_NUM; bw++) {
if (bw >= CHANNEL_WIDTH_160)
break;
if (band == BAND_ON_2_4G && bw >= CHANNEL_WIDTH_80)
break;
if (band == BAND_ON_2_4G)
ch_num = CENTER_CH_2G_NUM;
else
ch_num = center_chs_5g_num(bw);
if (ch_num == 0) {
rtw_warn_on(1);
break;
}
for (rs = 0; rs < RATE_SECTION_NUM; rs++) {
if (band == BAND_ON_2_4G && IS_VHT_RATE_SECTION(rs))
continue;
if (band == BAND_ON_5G && IS_CCK_RATE_SECTION(rs))
continue;
if (bw > CHANNEL_WIDTH_20 && (IS_CCK_RATE_SECTION(rs) || IS_OFDM_RATE_SECTION(rs)))
continue;
if (bw > CHANNEL_WIDTH_40 && IS_HT_RATE_SECTION(rs))
continue;
if (rate_section_to_tx_num(rs) >= hal_spec->nss_num)
continue;
if (IS_VHT_RATE_SECTION(rs) && !IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(adapter))
continue;
/* by pass 5G 20M, 40M pure reference */
if (band == BAND_ON_5G && (bw == CHANNEL_WIDTH_20 || bw == CHANNEL_WIDTH_40)) {
if (hal_data->tx_pwr_lmt_5g_20_40_ref == TX_PWR_LMT_REF_HT_FROM_VHT) {
if (IS_HT_RATE_SECTION(rs))
continue;
} else if (hal_data->tx_pwr_lmt_5g_20_40_ref == TX_PWR_LMT_REF_VHT_FROM_HT) {
if (IS_VHT_RATE_SECTION(rs) && bw <= CHANNEL_WIDTH_40)
continue;
}
}
DBG_871X_SEL_NL(sel, "[%s][%s][%s]\n"
, band_str(band)
, ch_width_str(bw)
, rate_section_str(rs)
);
/* header for limit in db */
DBG_871X_SEL_NL(sel, "%3s %5s %5s %5s %5s "
, "ch"
, (rd == TXPWR_LMT_FCC ? "*FCC" : "FCC")
, (rd == TXPWR_LMT_ETSI ? "*ETSI" : "ETSI")
, (rd == TXPWR_LMT_MKK ? "*MKK" : "MKK")
, (rd == TXPWR_LMT_WW ? "*WW" : "WW")
);
/* header for limit offset */
for (path = 0; path < RF_PATH_MAX; path++) {
if (path >= hal_data->NumTotalRFPath)
break;
DBG_871X_SEL(sel, "|%3c %3c %3c %3c "
, (rd == TXPWR_LMT_FCC ? rf_path_char(path) : ' ')
, (rd == TXPWR_LMT_ETSI ? rf_path_char(path) : ' ')
, (rd == TXPWR_LMT_MKK ? rf_path_char(path) : ' ')
, (rd == TXPWR_LMT_WW ? rf_path_char(path) : ' ')
);
}
DBG_871X_SEL(sel, "\n");
for (n = 0; n < ch_num; n++) {
s8 limit_idx[RF_PATH_MAX][MAX_REGULATION_NUM];
s8 limit_offset[MAX_REGULATION_NUM];
u8 base;
if (band == BAND_ON_2_4G)
ch = n + 1;
else
ch = center_chs_5g(bw, n);
if (ch == 0) {
rtw_warn_on(1);
break;
}
/* dump limit in db (calculate from path A) */
limit_offset[0] = PHY_GetTxPowerLimit(adapter, 3, band, bw, RF_PATH_A, rates_by_sections[rs].rates[0], ch); /* FCC */
limit_offset[1] = PHY_GetTxPowerLimit(adapter, 1, band, bw, RF_PATH_A, rates_by_sections[rs].rates[0], ch); /* ETSI */
limit_offset[2] = PHY_GetTxPowerLimit(adapter, 2, band, bw, RF_PATH_A, rates_by_sections[rs].rates[0], ch); /* MKK */
limit_offset[3] = PHY_GetTxPowerLimit(adapter, 4, band, bw, RF_PATH_A, rates_by_sections[rs].rates[0], ch); /* WW */
base = phy_get_target_tx_power(adapter, band, RF_PATH_A, rs);
DBG_871X_SEL_NL(sel, "%3u ", ch);
for (i = 0; i < MAX_REGULATION_NUM; i++) {
if (limit_offset[i] == MAX_POWER_INDEX) {
limit_idx[0][i] = MAX_POWER_INDEX;
DBG_871X_SEL(sel, "%5s ", "NA");
} else {
limit_idx[0][i] = limit_offset[i] + base;
if ((limit_offset[i] + base) % 2)
DBG_871X_SEL(sel, "%3d.5 ", (limit_offset[i] + base) / 2);
else
DBG_871X_SEL(sel, "%5d ", (limit_offset[i] + base) / 2);
}
}
/* dump limit offset of each path */
for (path = 0; path < RF_PATH_MAX; path++) {
if (path >= hal_data->NumTotalRFPath)
break;
limit_offset[0] = PHY_GetTxPowerLimit(adapter, 3, band, bw, path, rates_by_sections[rs].rates[0], ch); /* FCC */
limit_offset[1] = PHY_GetTxPowerLimit(adapter, 1, band, bw, path, rates_by_sections[rs].rates[0], ch); /* ETSI */
limit_offset[2] = PHY_GetTxPowerLimit(adapter, 2, band, bw, path, rates_by_sections[rs].rates[0], ch); /* MKK */
limit_offset[3] = PHY_GetTxPowerLimit(adapter, 4, band, bw, path, rates_by_sections[rs].rates[0], ch); /* WW */
base = phy_get_target_tx_power(adapter, band, path, rs);
DBG_871X_SEL(sel, "|");
for (i = 0; i < MAX_REGULATION_NUM; i++) {
if (limit_offset[i] == MAX_POWER_INDEX) {
limit_idx[path][i] = MAX_POWER_INDEX;
DBG_871X_SEL(sel, "%3s ", "NA");
} else {
limit_idx[path][i] = limit_offset[i] + base;
DBG_871X_SEL(sel, "%3d ", limit_offset[i]);
}
}
}
/* compare limit_idx of each path, print 'x' when mismatch */
if (hal_data->NumTotalRFPath > 1) {
for (i = 0; i < MAX_REGULATION_NUM; i++) {
for (path = 0; path < RF_PATH_MAX; path++) {
if (path >= hal_data->NumTotalRFPath)
break;
if (limit_idx[path][i] != limit_idx[(path + 1) % hal_data->NumTotalRFPath][i])
break;
}
if (path >= hal_data->NumTotalRFPath)
DBG_871X_SEL(sel, " ");
else
DBG_871X_SEL(sel, "x");
}
}
DBG_871X_SEL(sel, "\n");
}
DBG_871X_SEL_NL(sel, "\n");
}
}
}
}
int rtw_is_phy_file_readable(const char *hal_file_name)
{
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (hal_file_name) {
rtw_merge_string(file__path, PATH_LENGTH_MAX, rtw_phy_file_path, hal_file_name);
return rtw_is_file_readable(file__path);
}
#endif
return _FALSE;
}
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
int
phy_ConfigMACWithParaFile(
IN PADAPTER Adapter,
IN char* pFileName
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
int rlen = 0, rtStatus = _FAIL;
char *szLine, *ptmp;
u32 u4bRegOffset, u4bRegValue, u4bMove;
if(!(Adapter->registrypriv.load_phy_file & LOAD_MAC_PARA_FILE))
return rtStatus;
_rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN);
if ((pHalData->mac_reg_len == 0) && (pHalData->mac_reg == NULL))
{
rtw_merge_string(file__path, PATH_LENGTH_MAX, rtw_phy_file_path, pFileName);
if (rtw_is_file_readable(file__path) == _TRUE)
{
rlen = rtw_retrieve_from_file(file__path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN);
if (rlen > 0)
{
rtStatus = _SUCCESS;
pHalData->mac_reg = rtw_zvmalloc(rlen);
if(pHalData->mac_reg) {
_rtw_memcpy(pHalData->mac_reg, pHalData->para_file_buf, rlen);
pHalData->mac_reg_len = rlen;
}
else {
DBG_871X("%s mac_reg alloc fail !\n",__FUNCTION__);
}
}
}
}
else
{
if ((pHalData->mac_reg_len != 0) && (pHalData->mac_reg != NULL)) {
_rtw_memcpy(pHalData->para_file_buf, pHalData->mac_reg, pHalData->mac_reg_len);
rtStatus = _SUCCESS;
}
else {
DBG_871X("%s(): Critical Error !!!\n",__FUNCTION__);
}
}
if (rtStatus == _SUCCESS)
{
ptmp = pHalData->para_file_buf;
for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp))
{
if(!IsCommentString(szLine))
{
// Get 1st hex value as register offset
if(GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove))
{
if(u4bRegOffset == 0xffff)
{ // Ending.
break;
}
// Get 2nd hex value as register value.
szLine += u4bMove;
if(GetHexValueFromString(szLine, &u4bRegValue, &u4bMove))
{
rtw_write8(Adapter, u4bRegOffset, (u8)u4bRegValue);
}
}
}
}
}
else
{
DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName);
}
return rtStatus;
}
int
phy_ConfigBBWithParaFile(
IN PADAPTER Adapter,
IN char* pFileName,
IN u32 ConfigType
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rlen = 0, rtStatus = _FAIL;
char *szLine, *ptmp;
u32 u4bRegOffset, u4bRegValue, u4bMove;
char *pBuf = NULL;
u32 *pBufLen = NULL;
if(!(Adapter->registrypriv.load_phy_file & LOAD_BB_PARA_FILE))
return rtStatus;
switch(ConfigType)
{
case CONFIG_BB_PHY_REG:
pBuf = pHalData->bb_phy_reg;
pBufLen = &pHalData->bb_phy_reg_len;
break;
case CONFIG_BB_AGC_TAB:
pBuf = pHalData->bb_agc_tab;
pBufLen = &pHalData->bb_agc_tab_len;
break;
default:
DBG_871X("Unknown ConfigType!! %d\r\n", ConfigType);
break;
}
_rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN);
if ((pBufLen != NULL) && (*pBufLen == 0) && (pBuf == NULL))
{
rtw_merge_string(file__path, PATH_LENGTH_MAX, rtw_phy_file_path, pFileName);
if (rtw_is_file_readable(file__path) == _TRUE)
{
rlen = rtw_retrieve_from_file(file__path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN);
if (rlen > 0)
{
rtStatus = _SUCCESS;
pBuf = rtw_zvmalloc(rlen);
if(pBuf) {
_rtw_memcpy(pBuf, pHalData->para_file_buf, rlen);
*pBufLen = rlen;
switch(ConfigType)
{
case CONFIG_BB_PHY_REG:
pHalData->bb_phy_reg = pBuf;
break;
case CONFIG_BB_AGC_TAB:
pHalData->bb_agc_tab = pBuf;
break;
}
}
else {
DBG_871X("%s(): ConfigType %d alloc fail !\n",__FUNCTION__,ConfigType);
}
}
}
}
else
{
if ((pBufLen != NULL) && (*pBufLen == 0) && (pBuf == NULL)) {
_rtw_memcpy(pHalData->para_file_buf, pBuf, *pBufLen);
rtStatus = _SUCCESS;
}
else {
DBG_871X("%s(): Critical Error !!!\n",__FUNCTION__);
}
}
if (rtStatus == _SUCCESS)
{
ptmp = pHalData->para_file_buf;
for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp))
{
if(!IsCommentString(szLine))
{
// Get 1st hex value as register offset.
if(GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove))
{
if(u4bRegOffset == 0xffff)
{ // Ending.
break;
}
else if (u4bRegOffset == 0xfe || u4bRegOffset == 0xffe)
{
#ifdef CONFIG_LONG_DELAY_ISSUE
rtw_msleep_os(50);
#else
rtw_mdelay_os(50);
#endif
}
else if (u4bRegOffset == 0xfd)
{
rtw_mdelay_os(5);
}
else if (u4bRegOffset == 0xfc)
{
rtw_mdelay_os(1);
}
else if (u4bRegOffset == 0xfb)
{
rtw_udelay_os(50);
}
else if (u4bRegOffset == 0xfa)
{
rtw_udelay_os(5);
}
else if (u4bRegOffset == 0xf9)
{
rtw_udelay_os(1);
}
// Get 2nd hex value as register value.
szLine += u4bMove;
if(GetHexValueFromString(szLine, &u4bRegValue, &u4bMove))
{
//DBG_871X("[BB-ADDR]%03lX=%08lX\n", u4bRegOffset, u4bRegValue);
PHY_SetBBReg(Adapter, u4bRegOffset, bMaskDWord, u4bRegValue);
if (u4bRegOffset == 0xa24)
pHalData->odmpriv.RFCalibrateInfo.RegA24 = u4bRegValue;
// Add 1us delay between BB/RF register setting.
rtw_udelay_os(1);
}
}
}
}
}
else
{
DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName);
}
return rtStatus;
}
VOID
phy_DecryptBBPgParaFile(
PADAPTER Adapter,
char* buffer
)
{
u32 i = 0, j = 0;
u8 map[95] = {0};
u8 currentChar;
char *BufOfLines, *ptmp;
//DBG_871X("=====>phy_DecryptBBPgParaFile()\n");
// 32 the ascii code of the first visable char, 126 the last one
for ( i = 0; i < 95; ++i )
map[i] = ( u8 ) ( 94 - i );
ptmp = buffer;
i = 0;
for (BufOfLines = GetLineFromBuffer(ptmp); BufOfLines != NULL; BufOfLines = GetLineFromBuffer(ptmp))
{
//DBG_871X("Encrypted Line: %s\n", BufOfLines);
for ( j = 0; j < strlen(BufOfLines); ++j )
{
currentChar = BufOfLines[j];
if ( currentChar == '\0' )
break;
currentChar -= (u8) ( ( ( ( i + j ) * 3 ) % 128 ) );
BufOfLines[j] = map[currentChar - 32] + 32;
}
//DBG_871X("Decrypted Line: %s\n", BufOfLines );
if (strlen(BufOfLines) != 0)
i++;
BufOfLines[strlen(BufOfLines)] = '\n';
}
}
int
phy_ParseBBPgParaFile(
PADAPTER Adapter,
char* buffer
)
{
int rtStatus = _SUCCESS;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
char *szLine, *ptmp;
u32 u4bRegOffset, u4bRegMask, u4bRegValue;
u32 u4bMove;
BOOLEAN firstLine = _TRUE;
u8 tx_num = 0;
u8 band = 0, rf_path = 0;
//DBG_871X("=====>phy_ParseBBPgParaFile()\n");
if ( Adapter->registrypriv.RegDecryptCustomFile == 1 )
phy_DecryptBBPgParaFile( Adapter, buffer);
ptmp = buffer;
for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp))
{
if (isAllSpaceOrTab(szLine, sizeof(*szLine)))
continue;
if(!IsCommentString(szLine))
{
// Get header info (relative value or exact value)
if ( firstLine )
{
if ( eqNByte( szLine, (u8 *)("#[v1]"), 5 ) )
{
pHalData->odmpriv.PhyRegPgVersion = szLine[3] - '0';
//DBG_871X("This is a new format PHY_REG_PG.txt \n");
}
else if ( eqNByte( szLine, (u8 *)("#[v0]"), 5 ))
{
pHalData->odmpriv.PhyRegPgVersion = szLine[3] - '0';
//DBG_871X("This is a old format PHY_REG_PG.txt ok\n");
}
else
{
DBG_871X("The format in PHY_REG_PG are invalid %s\n", szLine);
return _FAIL;
}
if ( eqNByte( szLine + 5, (u8 *)("[Exact]#"), 8 ) )
{
pHalData->odmpriv.PhyRegPgValueType = PHY_REG_PG_EXACT_VALUE;
//DBG_871X("The values in PHY_REG_PG are exact values ok\n");
firstLine = _FALSE;
continue;
}
else if ( eqNByte( szLine + 5, (pu1Byte)("[Relative]#"), 11 ) )
{
pHalData->odmpriv.PhyRegPgValueType = PHY_REG_PG_RELATIVE_VALUE;
//DBG_871X("The values in PHY_REG_PG are relative values ok\n");
firstLine = _FALSE;
continue;
}
else
{
DBG_871X("The values in PHY_REG_PG are invalid %s\n", szLine);
return _FAIL;
}
}
if ( pHalData->odmpriv.PhyRegPgVersion == 0 )
{
// Get 1st hex value as register offset.
if(GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove))
{
szLine += u4bMove;
if(u4bRegOffset == 0xffff)
{ // Ending.
break;
}
// Get 2nd hex value as register mask.
if ( GetHexValueFromString(szLine, &u4bRegMask, &u4bMove) )
szLine += u4bMove;
else
return _FAIL;
if ( pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_RELATIVE_VALUE )
{
// Get 3rd hex value as register value.
if(GetHexValueFromString(szLine, &u4bRegValue, &u4bMove))
{
PHY_StoreTxPowerByRate(Adapter, 0, 0, 1, u4bRegOffset, u4bRegMask, u4bRegValue);
//DBG_871X("[ADDR] %03X=%08X Mask=%08x\n", u4bRegOffset, u4bRegValue, u4bRegMask);
}
else
{
return _FAIL;
}
}
else if ( pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_EXACT_VALUE )
{
u32 combineValue = 0;
u8 integer = 0, fraction = 0;
if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) )
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if ( fraction == 5 ) integer += 1;
combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) );
//DBG_871X(" %d", integer );
if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) )
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if ( fraction == 5 ) integer += 1;
combineValue <<= 8;
combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) );
//DBG_871X(" %d", integer );
if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) )
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if ( fraction == 5 ) integer += 1;
combineValue <<= 8;
combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) );
//DBG_871X(" %d", integer );
if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) )
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if ( fraction == 5 ) integer += 1;
combineValue <<= 8;
combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) );
//DBG_871X(" %d", integer );
PHY_StoreTxPowerByRate(Adapter, 0, 0, 1, u4bRegOffset, u4bRegMask, combineValue);
//DBG_871X("[ADDR] 0x%3x = 0x%4x\n", u4bRegOffset, combineValue );
}
}
}
else if ( pHalData->odmpriv.PhyRegPgVersion > 0 )
{
u32 index = 0, cnt = 0;
if ( eqNByte( szLine, "0xffff", 6 ) )
break;
if( !eqNByte( "#[END]#", szLine, 7 ) )
{
// load the table label info
if ( szLine[0] == '#' )
{
index = 0;
if ( eqNByte( szLine, "#[2.4G]" , 7 ) )
{
band = BAND_ON_2_4G;
index += 8;
}
else if ( eqNByte( szLine, "#[5G]", 5) )
{
band = BAND_ON_5G;
index += 6;
}
else
{
DBG_871X("Invalid band %s in PHY_REG_PG.txt \n", szLine );
return _FAIL;
}
rf_path= szLine[index] - 'A';
//DBG_871X(" Table label Band %d, RfPath %d\n", band, rf_path );
}
else // load rows of tables
{
if ( szLine[1] == '1' )
tx_num = RF_1TX;
else if ( szLine[1] == '2' )
tx_num = RF_2TX;
else if ( szLine[1] == '3' )
tx_num = RF_3TX;
else if ( szLine[1] == '4' )
tx_num = RF_4TX;
else
{
DBG_871X("Invalid row in PHY_REG_PG.txt '%c'(%d)\n", szLine[1], szLine[1]);
return _FAIL;
}
while ( szLine[index] != ']' )
++index;
++index;// skip ]
// Get 2nd hex value as register offset.
szLine += index;
if ( GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove) )
szLine += u4bMove;
else
return _FAIL;
// Get 2nd hex value as register mask.
if ( GetHexValueFromString(szLine, &u4bRegMask, &u4bMove) )
szLine += u4bMove;
else
return _FAIL;
if ( pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_RELATIVE_VALUE )
{
// Get 3rd hex value as register value.
if(GetHexValueFromString(szLine, &u4bRegValue, &u4bMove))
{
PHY_StoreTxPowerByRate(Adapter, band, rf_path, tx_num, u4bRegOffset, u4bRegMask, u4bRegValue);
//DBG_871X("[ADDR] %03X (tx_num %d) =%08X Mask=%08x\n", u4bRegOffset, tx_num, u4bRegValue, u4bRegMask);
}
else
{
return _FAIL;
}
}
else if ( pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_EXACT_VALUE )
{
u32 combineValue = 0;
u8 integer = 0, fraction = 0;
if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) )
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if ( fraction == 5 ) integer += 1;
combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) );
//DBG_871X(" %d", integer );
if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) )
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if ( fraction == 5 ) integer += 1;
combineValue <<= 8;
combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) );
//DBG_871X(" %d", integer );
if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) )
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if ( fraction == 5 ) integer += 1;
combineValue <<= 8;
combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) );
//DBG_871X(" %d", integer );
if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) )
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if ( fraction == 5 ) integer += 1;
combineValue <<= 8;
combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) );
//DBG_871X(" %d", integer );
PHY_StoreTxPowerByRate(Adapter, band, rf_path, tx_num, u4bRegOffset, u4bRegMask, combineValue);
//DBG_871X("[ADDR] 0x%3x (tx_num %d) = 0x%4x\n", u4bRegOffset, tx_num, combineValue );
}
}
}
}
}
}
//DBG_871X("<=====phy_ParseBBPgParaFile()\n");
return rtStatus;
}
int
phy_ConfigBBWithPgParaFile(
IN PADAPTER Adapter,
IN const char *pFileName)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rlen = 0, rtStatus = _FAIL;
if(!(Adapter->registrypriv.load_phy_file & LOAD_BB_PG_PARA_FILE))
return rtStatus;
_rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN);
if (pHalData->bb_phy_reg_pg == NULL) {
rtw_merge_string(file__path, PATH_LENGTH_MAX, rtw_phy_file_path, pFileName);
if (rtw_is_file_readable(file__path) == _TRUE)
{
rlen = rtw_retrieve_from_file(file__path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN);
if (rlen > 0)
{
rtStatus = _SUCCESS;
pHalData->bb_phy_reg_pg = rtw_zvmalloc(rlen);
if(pHalData->bb_phy_reg_pg) {
_rtw_memcpy(pHalData->bb_phy_reg_pg, pHalData->para_file_buf, rlen);
pHalData->bb_phy_reg_pg_len = rlen;
}
else {
DBG_871X("%s bb_phy_reg_pg alloc fail !\n",__FUNCTION__);
}
}
}
} else {
if ((pHalData->bb_phy_reg_pg_len != 0) && (pHalData->bb_phy_reg_pg != NULL)) {
_rtw_memcpy(pHalData->para_file_buf, pHalData->bb_phy_reg_pg, pHalData->bb_phy_reg_pg_len);
rtStatus = _SUCCESS;
}
else {
DBG_871X("%s(): Critical Error !!!\n",__FUNCTION__);
}
}
if(rtStatus == _SUCCESS)
{
//DBG_871X("phy_ConfigBBWithPgParaFile(): read %s ok\n", pFileName);
phy_ParseBBPgParaFile(Adapter, pHalData->para_file_buf);
}
else
{
DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName);
}
return rtStatus;
}
#if (MP_DRIVER == 1 )
int
phy_ConfigBBWithMpParaFile(
IN PADAPTER Adapter,
IN char* pFileName
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rlen = 0, rtStatus = _FAIL;
char *szLine, *ptmp;
u32 u4bRegOffset, u4bRegValue, u4bMove;
if(!(Adapter->registrypriv.load_phy_file & LOAD_BB_MP_PARA_FILE))
return rtStatus;
_rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN);
if ((pHalData->bb_phy_reg_mp_len == 0) && (pHalData->bb_phy_reg_mp == NULL))
{
rtw_merge_string(file__path, PATH_LENGTH_MAX, rtw_phy_file_path, pFileName);
if (rtw_is_file_readable(file__path) == _TRUE)
{
rlen = rtw_retrieve_from_file(file__path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN);
if (rlen > 0)
{
rtStatus = _SUCCESS;
pHalData->bb_phy_reg_mp = rtw_zvmalloc(rlen);
if(pHalData->bb_phy_reg_mp) {
_rtw_memcpy(pHalData->bb_phy_reg_mp, pHalData->para_file_buf, rlen);
pHalData->bb_phy_reg_mp_len = rlen;
}
else {
DBG_871X("%s bb_phy_reg_mp alloc fail !\n",__FUNCTION__);
}
}
}
}
else
{
if ((pHalData->bb_phy_reg_mp_len != 0) && (pHalData->bb_phy_reg_mp != NULL)) {
_rtw_memcpy(pHalData->para_file_buf, pHalData->bb_phy_reg_mp, pHalData->bb_phy_reg_mp_len);
rtStatus = _SUCCESS;
}
else {
DBG_871X("%s(): Critical Error !!!\n",__FUNCTION__);
}
}
if(rtStatus == _SUCCESS)
{
//DBG_871X("phy_ConfigBBWithMpParaFile(): read %s ok\n", pFileName);
ptmp = pHalData->para_file_buf;
for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp))
{
if(!IsCommentString(szLine))
{
// Get 1st hex value as register offset.
if(GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove))
{
if(u4bRegOffset == 0xffff)
{ // Ending.
break;
}
else if (u4bRegOffset == 0xfe || u4bRegOffset == 0xffe)
{
#ifdef CONFIG_LONG_DELAY_ISSUE
rtw_msleep_os(50);
#else
rtw_mdelay_os(50);
#endif
}
else if (u4bRegOffset == 0xfd)
{
rtw_mdelay_os(5);
}
else if (u4bRegOffset == 0xfc)
{
rtw_mdelay_os(1);
}
else if (u4bRegOffset == 0xfb)
{
rtw_udelay_os(50);
}
else if (u4bRegOffset == 0xfa)
{
rtw_udelay_os(5);
}
else if (u4bRegOffset == 0xf9)
{
rtw_udelay_os(1);
}
// Get 2nd hex value as register value.
szLine += u4bMove;
if(GetHexValueFromString(szLine, &u4bRegValue, &u4bMove))
{
//DBG_871X("[ADDR]%03lX=%08lX\n", u4bRegOffset, u4bRegValue);
PHY_SetBBReg(Adapter, u4bRegOffset, bMaskDWord, u4bRegValue);
// Add 1us delay between BB/RF register setting.
rtw_udelay_os(1);
}
}
}
}
}
else
{
DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName);
}
return rtStatus;
}
#endif
int
PHY_ConfigRFWithParaFile(
IN PADAPTER Adapter,
IN char* pFileName,
IN u8 eRFPath
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rlen = 0, rtStatus = _FAIL;
char *szLine, *ptmp;
u32 u4bRegOffset, u4bRegValue, u4bMove;
u16 i;
char *pBuf = NULL;
u32 *pBufLen = NULL;
if(!(Adapter->registrypriv.load_phy_file & LOAD_RF_PARA_FILE))
return rtStatus;
switch(eRFPath)
{
case ODM_RF_PATH_A:
pBuf = pHalData->rf_radio_a;
pBufLen = &pHalData->rf_radio_a_len;
break;
case ODM_RF_PATH_B:
pBuf = pHalData->rf_radio_b;
pBufLen = &pHalData->rf_radio_b_len;
break;
default:
DBG_871X("Unknown RF path!! %d\r\n", eRFPath);
break;
}
_rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN);
if ((pBufLen != NULL) && (*pBufLen == 0) && (pBuf == NULL))
{
rtw_merge_string(file__path, PATH_LENGTH_MAX, rtw_phy_file_path, pFileName);
if (rtw_is_file_readable(file__path) == _TRUE)
{
rlen = rtw_retrieve_from_file(file__path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN);
if (rlen > 0)
{
rtStatus = _SUCCESS;
pBuf = rtw_zvmalloc(rlen);
if(pBuf) {
_rtw_memcpy(pBuf, pHalData->para_file_buf, rlen);
*pBufLen = rlen;
switch(eRFPath)
{
case ODM_RF_PATH_A:
pHalData->rf_radio_a = pBuf;
break;
case ODM_RF_PATH_B:
pHalData->rf_radio_b = pBuf;
break;
}
}
else {
DBG_871X("%s(): eRFPath=%d alloc fail !\n",__FUNCTION__,eRFPath);
}
}
}
}
else
{
if ((pBufLen != NULL) && (*pBufLen == 0) && (pBuf == NULL)) {
_rtw_memcpy(pHalData->para_file_buf, pBuf, *pBufLen);
rtStatus = _SUCCESS;
}
else {
DBG_871X("%s(): Critical Error !!!\n",__FUNCTION__);
}
}
if(rtStatus == _SUCCESS)
{
//DBG_871X("%s(): read %s successfully\n", __FUNCTION__, pFileName);
ptmp = pHalData->para_file_buf;
for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp))
{
if(!IsCommentString(szLine))
{
// Get 1st hex value as register offset.
if(GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove))
{
if(u4bRegOffset == 0xfe || u4bRegOffset == 0xffe)
{ // Deay specific ms. Only RF configuration require delay.
#ifdef CONFIG_LONG_DELAY_ISSUE
rtw_msleep_os(50);
#else
rtw_mdelay_os(50);
#endif
}
else if (u4bRegOffset == 0xfd)
{
//delay_ms(5);
for(i=0;i<100;i++)
rtw_udelay_os(MAX_STALL_TIME);
}
else if (u4bRegOffset == 0xfc)
{
//delay_ms(1);
for(i=0;i<20;i++)
rtw_udelay_os(MAX_STALL_TIME);
}
else if (u4bRegOffset == 0xfb)
{
rtw_udelay_os(50);
}
else if (u4bRegOffset == 0xfa)
{
rtw_udelay_os(5);
}
else if (u4bRegOffset == 0xf9)
{
rtw_udelay_os(1);
}
else if(u4bRegOffset == 0xffff)
{
break;
}
// Get 2nd hex value as register value.
szLine += u4bMove;
if(GetHexValueFromString(szLine, &u4bRegValue, &u4bMove))
{
PHY_SetRFReg(Adapter, eRFPath, u4bRegOffset, bRFRegOffsetMask, u4bRegValue);
// Temp add, for frequency lock, if no delay, that may cause
// frequency shift, ex: 2412MHz => 2417MHz
// If frequency shift, the following action may works.
// Fractional-N table in radio_a.txt
//0x2a 0x00001 // channel 1
//0x2b 0x00808 frequency divider.
//0x2b 0x53333
//0x2c 0x0000c
rtw_udelay_os(1);
}
}
}
}
}
else
{
DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName);
}
return rtStatus;
}
VOID
initDeltaSwingIndexTables(
PADAPTER Adapter,
char* Band,
char* Path,
char* Sign,
char* Channel,
char* Rate,
char* Data
)
{
#define STR_EQUAL_5G(_band, _path, _sign, _rate, _chnl) \
((strcmp(Band, _band) == 0) && (strcmp(Path, _path) == 0) && (strcmp(Sign, _sign) == 0) &&\
(strcmp(Rate, _rate) == 0) && (strcmp(Channel, _chnl) == 0)\
)
#define STR_EQUAL_2G(_band, _path, _sign, _rate) \
((strcmp(Band, _band) == 0) && (strcmp(Path, _path) == 0) && (strcmp(Sign, _sign) == 0) &&\
(strcmp(Rate, _rate) == 0)\
)
#define STORE_SWING_TABLE(_array, _iteratedIdx) \
for(token = strsep(&Data, delim); token != NULL; token = strsep(&Data, delim))\
{\
sscanf(token, "%d", &idx);\
_array[_iteratedIdx++] = (u8)idx;\
}\
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
PODM_RF_CAL_T pRFCalibrateInfo = &(pDM_Odm->RFCalibrateInfo);
u32 j = 0;
char *token;
char delim[] = ",";
u32 idx = 0;
//DBG_871X("===>initDeltaSwingIndexTables(): Band: %s;\nPath: %s;\nSign: %s;\nChannel: %s;\nRate: %s;\n, Data: %s;\n",
// Band, Path, Sign, Channel, Rate, Data);
if ( STR_EQUAL_2G("2G", "A", "+", "CCK") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKA_P, j);
}
else if ( STR_EQUAL_2G("2G", "A", "-", "CCK") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKA_N, j);
}
else if ( STR_EQUAL_2G("2G", "B", "+", "CCK") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKB_P, j);
}
else if ( STR_EQUAL_2G("2G", "B", "-", "CCK") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKB_N, j);
}
else if ( STR_EQUAL_2G("2G", "A", "+", "ALL") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GA_P, j);
}
else if ( STR_EQUAL_2G("2G", "A", "-", "ALL") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GA_N, j);
}
else if ( STR_EQUAL_2G("2G", "B", "+", "ALL") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GB_P, j);
}
else if ( STR_EQUAL_2G("2G", "B", "-", "ALL") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GB_N, j);
}
else if ( STR_EQUAL_5G("5G", "A", "+", "ALL", "0") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[0], j);
}
else if ( STR_EQUAL_5G("5G", "A", "-", "ALL", "0") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[0], j);
}
else if ( STR_EQUAL_5G("5G", "B", "+", "ALL", "0") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[0], j);
}
else if ( STR_EQUAL_5G("5G", "B", "-", "ALL", "0") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[0], j);
}
else if ( STR_EQUAL_5G("5G", "A", "+", "ALL", "1") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[1], j);
}
else if ( STR_EQUAL_5G("5G", "A", "-", "ALL", "1") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[1], j);
}
else if ( STR_EQUAL_5G("5G", "B", "+", "ALL", "1") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[1], j);
}
else if ( STR_EQUAL_5G("5G", "B", "-", "ALL", "1") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[1], j);
}
else if ( STR_EQUAL_5G("5G", "A", "+", "ALL", "2") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[2], j);
}
else if ( STR_EQUAL_5G("5G", "A", "-", "ALL", "2") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[2], j);
}
else if ( STR_EQUAL_5G("5G", "B", "+", "ALL", "2") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[2], j);
}
else if ( STR_EQUAL_5G("5G", "B", "-", "ALL", "2") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[2], j);
}
else if ( STR_EQUAL_5G("5G", "A", "+", "ALL", "3") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[3], j);
}
else if ( STR_EQUAL_5G("5G", "A", "-", "ALL", "3") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[3], j);
}
else if ( STR_EQUAL_5G("5G", "B", "+", "ALL", "3") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[3], j);
}
else if ( STR_EQUAL_5G("5G", "B", "-", "ALL", "3") )
{
STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[3], j);
}
else
{
DBG_871X("===>initDeltaSwingIndexTables(): The input is invalid!!\n");
}
}
int
PHY_ConfigRFWithTxPwrTrackParaFile(
IN PADAPTER Adapter,
IN char* pFileName
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
PODM_RF_CAL_T pRFCalibrateInfo = &(pDM_Odm->RFCalibrateInfo);
int rlen = 0, rtStatus = _FAIL;
char *szLine, *ptmp;
u32 i = 0, j = 0;
char c = 0;
if(!(Adapter->registrypriv.load_phy_file & LOAD_RF_TXPWR_TRACK_PARA_FILE))
return rtStatus;
_rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN);
if ((pHalData->rf_tx_pwr_track_len == 0) && (pHalData->rf_tx_pwr_track == NULL))
{
rtw_merge_string(file__path, PATH_LENGTH_MAX, rtw_phy_file_path, pFileName);
if (rtw_is_file_readable(file__path) == _TRUE)
{
rlen = rtw_retrieve_from_file(file__path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN);
if (rlen > 0)
{
rtStatus = _SUCCESS;
pHalData->rf_tx_pwr_track = rtw_zvmalloc(rlen);
if(pHalData->rf_tx_pwr_track) {
_rtw_memcpy(pHalData->rf_tx_pwr_track, pHalData->para_file_buf, rlen);
pHalData->rf_tx_pwr_track_len = rlen;
}
else {
DBG_871X("%s rf_tx_pwr_track alloc fail !\n",__FUNCTION__);
}
}
}
}
else
{
if ((pHalData->rf_tx_pwr_track_len != 0) && (pHalData->rf_tx_pwr_track != NULL)) {
_rtw_memcpy(pHalData->para_file_buf, pHalData->rf_tx_pwr_track, pHalData->rf_tx_pwr_track_len);
rtStatus = _SUCCESS;
}
else {
DBG_871X("%s(): Critical Error !!!\n",__FUNCTION__);
}
}
if(rtStatus == _SUCCESS)
{
//DBG_871X("%s(): read %s successfully\n", __FUNCTION__, pFileName);
ptmp = pHalData->para_file_buf;
for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp))
{
if ( ! IsCommentString(szLine) )
{
char band[5]="", path[5]="", sign[5] = "";
char chnl[5]="", rate[10]="";
char data[300]=""; // 100 is too small
if (strlen(szLine) < 10 || szLine[0] != '[')
continue;
strncpy(band, szLine+1, 2);
strncpy(path, szLine+5, 1);
strncpy(sign, szLine+8, 1);
i = 10; // szLine+10
if ( ! ParseQualifiedString(szLine, &i, rate, '[', ']') ) {
//DBG_871X("Fail to parse rate!\n");
}
if ( ! ParseQualifiedString(szLine, &i, chnl, '[', ']') ) {
//DBG_871X("Fail to parse channel group!\n");
}
while ( szLine[i] != '{' && i < strlen(szLine))
i++;
if ( ! ParseQualifiedString(szLine, &i, data, '{', '}') ) {
//DBG_871X("Fail to parse data!\n");
}
initDeltaSwingIndexTables(Adapter, band, path, sign, chnl, rate, data);
}
}
}
else
{
DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName);
}
#if 0
for (i = 0; i < DELTA_SWINGIDX_SIZE; ++i)
{
DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GA_P[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GA_P[i]);
DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GA_N[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GA_N[i]);
DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GB_P[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GB_P[i]);
DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GB_N[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GB_N[i]);
DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKA_P[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKA_P[i]);
DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKA_N[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKA_N[i]);
DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKB_P[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKB_P[i]);
DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKB_N[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKB_N[i]);
for (j = 0; j < 3; ++j)
{
DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[%d][%d] = %d\n", j, i, pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[j][i]);
DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[%d][%d] = %d\n", j, i, pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[j][i]);
DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[%d][%d] = %d\n", j, i, pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[j][i]);
DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[%d][%d] = %d\n", j, i, pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[j][i]);
}
}
#endif
return rtStatus;
}
int
phy_ParsePowerLimitTableFile(
PADAPTER Adapter,
char* buffer
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
PDM_ODM_T pDM_Odm = &(pHalData->odmpriv);
u32 i = 0, forCnt = 0;
u8 loadingStage = 0, limitValue = 0, fraction = 0;
char *szLine, *ptmp;
int rtStatus = _SUCCESS;
char band[10], bandwidth[10], rateSection[10],
regulation[TXPWR_LMT_MAX_REGULATION_NUM][10], rfPath[10],colNumBuf[10];
u8 colNum = 0;
DBG_871X("===>phy_ParsePowerLimitTableFile()\n" );
if ( Adapter->registrypriv.RegDecryptCustomFile == 1 )
phy_DecryptBBPgParaFile( Adapter, buffer);
ptmp = buffer;
for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp))
{
if (isAllSpaceOrTab(szLine, sizeof(*szLine)))
continue;
// skip comment
if ( IsCommentString( szLine ) ) {
continue;
}
if( loadingStage == 0 ) {
for ( forCnt = 0; forCnt < TXPWR_LMT_MAX_REGULATION_NUM; ++forCnt )
_rtw_memset( ( PVOID ) regulation[forCnt], 0, 10 );
_rtw_memset( ( PVOID ) band, 0, 10 );
_rtw_memset( ( PVOID ) bandwidth, 0, 10 );
_rtw_memset( ( PVOID ) rateSection, 0, 10 );
_rtw_memset( ( PVOID ) rfPath, 0, 10 );
_rtw_memset( ( PVOID ) colNumBuf, 0, 10 );
if ( szLine[0] != '#' || szLine[1] != '#' )
continue;
// skip the space
i = 2;
while ( szLine[i] == ' ' || szLine[i] == '\t' )
++i;
szLine[--i] = ' '; // return the space in front of the regulation info
// Parse the label of the table
if ( ! ParseQualifiedString( szLine, &i, band, ' ', ',' ) ) {
DBG_871X( "Fail to parse band!\n");
return _FAIL;
}
if ( ! ParseQualifiedString( szLine, &i, bandwidth, ' ', ',' ) ) {
DBG_871X("Fail to parse bandwidth!\n");
return _FAIL;
}
if ( ! ParseQualifiedString( szLine, &i, rfPath, ' ', ',' ) ) {
DBG_871X("Fail to parse rf path!\n");
return _FAIL;
}
if ( ! ParseQualifiedString( szLine, &i, rateSection, ' ', ',' ) ) {
DBG_871X("Fail to parse rate!\n");
return _FAIL;
}
loadingStage = 1;
}
else if ( loadingStage == 1 )
{
if ( szLine[0] != '#' || szLine[1] != '#' )
continue;
// skip the space
i = 2;
while ( szLine[i] == ' ' || szLine[i] == '\t' )
++i;
if ( !eqNByte( (u8 *)(szLine + i), (u8 *)("START"), 5 ) ) {
DBG_871X("Lost \"## START\" label\n");
return _FAIL;
}
loadingStage = 2;
}
else if ( loadingStage == 2 )
{
if ( szLine[0] != '#' || szLine[1] != '#' )
continue;
// skip the space
i = 2;
while ( szLine[i] == ' ' || szLine[i] == '\t' )
++i;
if ( ! ParseQualifiedString( szLine, &i, colNumBuf, '#', '#' ) ) {
DBG_871X("Fail to parse column number!\n");
return _FAIL;
}
if ( !GetU1ByteIntegerFromStringInDecimal( colNumBuf, &colNum ) )
return _FAIL;
if ( colNum > TXPWR_LMT_MAX_REGULATION_NUM ) {
DBG_871X("unvalid col number %d (greater than max %d)\n",
colNum, TXPWR_LMT_MAX_REGULATION_NUM );
return _FAIL;
}
for ( forCnt = 0; forCnt < colNum; ++forCnt )
{
u8 regulation_name_cnt = 0;
// skip the space
while ( szLine[i] == ' ' || szLine[i] == '\t' )
++i;
while ( szLine[i] != ' ' && szLine[i] != '\t' && szLine[i] != '\0' )
regulation[forCnt][regulation_name_cnt++] = szLine[i++];
//DBG_871X("regulation %s!\n", regulation[forCnt]);
if ( regulation_name_cnt == 0 ) {
DBG_871X("unvalid number of regulation!\n");
return _FAIL;
}
}
loadingStage = 3;
}
else if ( loadingStage == 3 )
{
char channel[10] = {0}, powerLimit[10] = {0};
u8 cnt = 0;
// the table ends
if ( szLine[0] == '#' && szLine[1] == '#' ) {
i = 2;
while ( szLine[i] == ' ' || szLine[i] == '\t' )
++i;
if ( eqNByte( (u8 *)(szLine + i), (u8 *)("END"), 3 ) ) {
loadingStage = 0;
continue;
}
else {
DBG_871X("Wrong format\n");
DBG_871X("<===== phy_ParsePowerLimitTableFile()\n");
return _FAIL;
}
}
if ( ( szLine[0] != 'c' && szLine[0] != 'C' ) ||
( szLine[1] != 'h' && szLine[1] != 'H' ) ) {
DBG_871X("Meet wrong channel => power limt pair '%c','%c'(%d,%d)\n", szLine[0], szLine[1], szLine[0], szLine[1]);
continue;
}
i = 2;// move to the location behind 'h'
// load the channel number
cnt = 0;
while ( szLine[i] >= '0' && szLine[i] <= '9' ) {
channel[cnt] = szLine[i];
++cnt;
++i;
}
//DBG_871X("chnl %s!\n", channel);
for ( forCnt = 0; forCnt < colNum; ++forCnt )
{
// skip the space between channel number and the power limit value
while ( szLine[i] == ' ' || szLine[i] == '\t' )
++i;
// load the power limit value
cnt = 0;
fraction = 0;
_rtw_memset( ( PVOID ) powerLimit, 0, 10 );
while ( ( szLine[i] >= '0' && szLine[i] <= '9' ) || szLine[i] == '.' )
{
if ( szLine[i] == '.' ){
if ( ( szLine[i+1] >= '0' && szLine[i+1] <= '9' ) ) {
fraction = szLine[i+1];
i += 2;
}
else {
DBG_871X("Wrong fraction in TXPWR_LMT.txt\n");
return _FAIL;
}
break;
}
powerLimit[cnt] = szLine[i];
++cnt;
++i;
}
if ( powerLimit[0] == '\0' ) {
powerLimit[0] = '6';
powerLimit[1] = '3';
i += 2;
}
else {
if ( !GetU1ByteIntegerFromStringInDecimal( powerLimit, &limitValue ) )
return _FAIL;
limitValue *= 2;
cnt = 0;
if ( fraction == '5' )
++limitValue;
// the value is greater or equal to 100
if ( limitValue >= 100 ) {
powerLimit[cnt++] = limitValue/100 + '0';
limitValue %= 100;
if ( limitValue >= 10 ) {
powerLimit[cnt++] = limitValue/10 + '0';
limitValue %= 10;
}
else {
powerLimit[cnt++] = '0';
}
powerLimit[cnt++] = limitValue + '0';
}
// the value is greater or equal to 10
else if ( limitValue >= 10 ) {
powerLimit[cnt++] = limitValue/10 + '0';
limitValue %= 10;
powerLimit[cnt++] = limitValue + '0';
}
// the value is less than 10
else
powerLimit[cnt++] = limitValue + '0';
powerLimit[cnt] = '\0';
}
//DBG_871X("ch%s => %s\n", channel, powerLimit);
// store the power limit value
PHY_SetTxPowerLimit(pDM_Odm, (u8 *)regulation[forCnt], (u8 *)band,
(u8 *)bandwidth, (u8 *)rateSection, (u8 *)rfPath, (u8 *)channel, (u8 *)powerLimit );
}
}
else
{
DBG_871X("Abnormal loading stage in phy_ParsePowerLimitTableFile()!\n");
rtStatus = _FAIL;
break;
}
}
DBG_871X("<===phy_ParsePowerLimitTableFile()\n");
return rtStatus;
}
int
PHY_ConfigRFWithPowerLimitTableParaFile(
IN PADAPTER Adapter,
IN const char *pFileName
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rlen = 0, rtStatus = _FAIL;
if(!(Adapter->registrypriv.load_phy_file & LOAD_RF_TXPWR_LMT_PARA_FILE))
return rtStatus;
_rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN);
if (pHalData->rf_tx_pwr_lmt == NULL) {
rtw_merge_string(file__path, PATH_LENGTH_MAX, rtw_phy_file_path, pFileName);
if (rtw_is_file_readable(file__path) == _TRUE)
{
rlen = rtw_retrieve_from_file(file__path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN);
if (rlen > 0)
{
rtStatus = _SUCCESS;
pHalData->rf_tx_pwr_lmt = rtw_zvmalloc(rlen);
if(pHalData->rf_tx_pwr_lmt) {
_rtw_memcpy(pHalData->rf_tx_pwr_lmt, pHalData->para_file_buf, rlen);
pHalData->rf_tx_pwr_lmt_len = rlen;
}
else {
DBG_871X("%s rf_tx_pwr_lmt alloc fail !\n",__FUNCTION__);
}
}
}
} else {
if ((pHalData->rf_tx_pwr_lmt_len != 0) && (pHalData->rf_tx_pwr_lmt != NULL)) {
_rtw_memcpy(pHalData->para_file_buf, pHalData->rf_tx_pwr_lmt, pHalData->rf_tx_pwr_lmt_len);
rtStatus = _SUCCESS;
}
else {
DBG_871X("%s(): Critical Error !!!\n",__FUNCTION__);
}
}
if(rtStatus == _SUCCESS)
{
//DBG_871X("%s(): read %s ok\n", __FUNCTION__, pFileName);
rtStatus = phy_ParsePowerLimitTableFile( Adapter, pHalData->para_file_buf );
}
else
{
DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName);
}
return rtStatus;
}
void phy_free_filebuf_mask(_adapter *padapter, u8 mask)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
if (pHalData->mac_reg && (mask & LOAD_MAC_PARA_FILE)) {
rtw_vmfree(pHalData->mac_reg, pHalData->mac_reg_len);
pHalData->mac_reg = NULL;
}
if (mask & LOAD_BB_PARA_FILE) {
if (pHalData->bb_phy_reg) {
rtw_vmfree(pHalData->bb_phy_reg, pHalData->bb_phy_reg_len);
pHalData->bb_phy_reg = NULL;
}
if (pHalData->bb_agc_tab) {
rtw_vmfree(pHalData->bb_agc_tab, pHalData->bb_agc_tab_len);
pHalData->bb_agc_tab = NULL;
}
}
if (pHalData->bb_phy_reg_pg && (mask & LOAD_BB_PG_PARA_FILE)) {
rtw_vmfree(pHalData->bb_phy_reg_pg, pHalData->bb_phy_reg_pg_len);
pHalData->bb_phy_reg_pg = NULL;
}
if (pHalData->bb_phy_reg_mp && (mask & LOAD_BB_MP_PARA_FILE)) {
rtw_vmfree(pHalData->bb_phy_reg_mp, pHalData->bb_phy_reg_mp_len);
pHalData->bb_phy_reg_mp = NULL;
}
if (mask & LOAD_RF_PARA_FILE) {
if (pHalData->rf_radio_a) {
rtw_vmfree(pHalData->rf_radio_a, pHalData->rf_radio_a_len);
pHalData->rf_radio_a = NULL;
}
if (pHalData->rf_radio_b) {
rtw_vmfree(pHalData->rf_radio_b, pHalData->rf_radio_b_len);
pHalData->rf_radio_b = NULL;
}
}
if (pHalData->rf_tx_pwr_track && (mask & LOAD_RF_TXPWR_TRACK_PARA_FILE)) {
rtw_vmfree(pHalData->rf_tx_pwr_track, pHalData->rf_tx_pwr_track_len);
pHalData->rf_tx_pwr_track = NULL;
}
if (pHalData->rf_tx_pwr_lmt && (mask & LOAD_RF_TXPWR_LMT_PARA_FILE)) {
rtw_vmfree(pHalData->rf_tx_pwr_lmt, pHalData->rf_tx_pwr_lmt_len);
pHalData->rf_tx_pwr_lmt = NULL;
}
}
inline void phy_free_filebuf(_adapter *padapter)
{
phy_free_filebuf_mask(padapter, 0xFF);
}
#endif