rtl8723cs/hal/rtl8703b/sdio/sdio_halinit.c
2017-01-30 21:28:09 +01:00

2022 lines
53 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2012 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _SDIO_HALINIT_C_
#include <rtl8703b_hal.h>
#include "hal_com_h2c.h"
/*
* Description:
* Call power on sequence to enable card
*
* Return:
* _SUCCESS enable success
* _FAIL enable fail
*/
static u8 CardEnable(PADAPTER padapter)
{
u8 bMacPwrCtrlOn;
u8 ret = _FAIL;
bMacPwrCtrlOn = _FALSE;
rtw_hal_get_hwreg(padapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn);
if (bMacPwrCtrlOn == _FALSE)
{
// RSV_CTRL 0x1C[7:0] = 0x00
// unlock ISO/CLK/Power control register
rtw_write8(padapter, REG_RSV_CTRL, 0x0);
ret = HalPwrSeqCmdParsing(padapter, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_SDIO_MSK, rtl8703B_card_enable_flow);
if (ret == _SUCCESS) {
u8 bMacPwrCtrlOn = _TRUE;
rtw_hal_set_hwreg(padapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn);
}
} else
ret = _SUCCESS;
return ret;
}
/*
* Description:
* Call this function to make sure power on successfully
*
* Return:
* _SUCCESS enable success
* _FAIL enable fail
*/
static int PowerOnCheck(PADAPTER padapter)
{
u32 val_offset0, val_offset1, val_offset2, val_offset3;
u32 val_mix = 0;
u32 res = 0;
u8 ret = _FAIL;
int index = 0;
val_offset0 = rtw_read8(padapter, REG_CR);
val_offset1 = rtw_read8(padapter, REG_CR+1);
val_offset2 = rtw_read8(padapter, REG_CR+2);
val_offset3 = rtw_read8(padapter, REG_CR+3);
if (val_offset0 == 0xEA || val_offset1 == 0xEA ||
val_offset2 == 0xEA || val_offset3 ==0xEA) {
DBG_871X("%s: power on fail, do Power on again\n", __func__);
return ret;
}
val_mix = val_offset3 << 24 | val_mix;
val_mix = val_offset2 << 16 | val_mix;
val_mix = val_offset1 << 8 | val_mix;
val_mix = val_offset0 | val_mix;
res = rtw_read32(padapter, REG_CR);
DBG_871X("%s: val_mix:0x%08x, res:0x%08x\n", __func__, val_mix, res);
while(index < 100) {
if (res == val_mix) {
DBG_871X("%s: 0x100 the result of cmd52 and cmd53 is the same.\n", __func__);
ret = _SUCCESS;
break;
} else {
DBG_871X("%s: 0x100 cmd52 and cmd53 is not the same(index:%d).\n", __func__, index);
res = rtw_read32(padapter, REG_CR);
index ++;
ret = _FAIL;
}
}
if (ret) {
index = 0;
while(index < 100) {
rtw_write32(padapter, 0x1B8, 0x12345678);
res = rtw_read32(padapter, 0x1B8);
if (res == 0x12345678) {
DBG_871X("%s: 0x1B8 test Pass.\n", __func__);
ret = _SUCCESS;
break;
} else {
index ++;
DBG_871X("%s: 0x1B8 test Fail(index: %d).\n", __func__, index);
ret = _FAIL;
}
}
} else {
DBG_871X("%s: fail at cmd52, cmd53.\n", __func__);
}
if (ret == _FAIL) {
DBG_871X_LEVEL(_drv_err_, "Dump MAC Page0 register:\n");
/* Dump Page0 for check cystal*/
for (index = 0 ; index < 0xff ; index++) {
if(index%16==0)
printk("0x%02x ",index);
printk("%02x ", rtw_read8(padapter, index));
if(index%16==15)
printk("\n");
else if(index%8==7)
printk("\t");
}
printk("\n");
}
return ret;
}
//static
u32 _InitPowerOn_8703BS(PADAPTER padapter)
{
u8 value8;
u16 value16;
u32 value32;
u8 ret;
u8 pwron_chk_cnt=0;
// u8 bMacPwrCtrlOn;
_init_power_on:
#if 1
// all of these MUST be configured before power on
#ifdef CONFIG_XTAL_26M
// Config PLL Reference CLK,
// Change crystal to 26M, APLL_FREF_SEL = 4b'0101
// APLL_FREF_SEL[0]=1b'1
value8 = rtw_read8(padapter, REG_AFE_PLL_CTRL);
value8 |= BIT(2);
rtw_write8(padapter, REG_AFE_PLL_CTRL, value8);
// APLL_FREF_SEL[2:1]=2b'10
value8 = rtw_read8(padapter, REG_AFE_CTRL_4_8703B+1);
value8 &= ~(BIT(1)|BIT(0));
value8 |= BIT(1);
rtw_write16(padapter, REG_AFE_CTRL_4_8703B+1, value8);
// APLL_FREF_SEL[3]=1b'0
value8 = rtw_read8(padapter, REG_AFE_CTRL_4_8703B);
value8 &= ~BIT(7);
rtw_write16(padapter, REG_AFE_CTRL_4_8703B, value8);
#endif // CONFIG_XTAL_26M
#ifdef CONFIG_EXT_CLK
// Use external crystal(XTAL)
value8 = rtw_read8(padapter, REG_PAD_CTRL1_8703B+2);
value8 |= BIT(7);
rtw_write8(padapter, REG_PAD_CTRL1_8703B+2, value8);
// CLK_REQ High active or Low Active
// Request GPIO polarity:
// 0: low active
// 1: high active
value8 = rtw_read8(padapter, REG_MULTI_FUNC_CTRL+1);
value8 |= BIT(5);
rtw_write8(padapter, REG_MULTI_FUNC_CTRL+1, value8);
#endif // CONFIG_EXT_CLK
#endif // all of these MUST be configured before power on
// only cmd52 can be used before power on(card enable)
ret = CardEnable(padapter);
if (ret == _FALSE) {
RT_TRACE(_module_hci_hal_init_c_, _drv_emerg_,
("%s: run power on flow fail\n", __FUNCTION__));
return _FAIL;
}
// Radio-Off Pin Trigger
value8 = rtw_read8(padapter, REG_GPIO_INTM+1);
value8 |= BIT(1); // Enable falling edge triggering interrupt
rtw_write8(padapter, REG_GPIO_INTM+1, value8);
value8 = rtw_read8(padapter, REG_GPIO_IO_SEL_2+1);
value8 |= BIT(1);
rtw_write8(padapter, REG_GPIO_IO_SEL_2+1, value8);
// Enable power down and GPIO interrupt
value16 = rtw_read16(padapter, REG_APS_FSMCO);
value16 |= EnPDN; // Enable HW power down and RF on
rtw_write16(padapter, REG_APS_FSMCO, value16);
// Enable CMD53 R/W Operation
// bMacPwrCtrlOn = _TRUE;
// rtw_hal_set_hwreg(padapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn);
rtw_write8(padapter, REG_CR, 0x00);
// Enable MAC DMA/WMAC/SCHEDULE/SEC block
value16 = rtw_read16(padapter, REG_CR);
value16 |= (HCI_TXDMA_EN | HCI_RXDMA_EN | TXDMA_EN | RXDMA_EN
| PROTOCOL_EN | SCHEDULE_EN | ENSEC | CALTMR_EN);
rtw_write16(padapter, REG_CR, value16);
//PowerOnCheck()
ret = PowerOnCheck(padapter);
pwron_chk_cnt++;
if (_FAIL == ret ) {
if (pwron_chk_cnt > 1) {
DBG_871X("Failed to init Power On!\n");
return _FAIL;
}
DBG_871X("Power on Fail! do it again\n");
goto _init_power_on;
}
#ifdef CONFIG_BT_COEXIST
rtw_btcoex_PowerOnSetting(padapter);
// external switch to S1
// 0x38[11] = 0x1
// 0x4c[23] = 0x1
// 0x64[0] = 0
value16 = rtw_read16(padapter, REG_PWR_DATA);
// Switch the control of EESK, EECS to RFC for DPDT or Antenna switch
value16 |= BIT(11); // BIT_EEPRPAD_RFE_CTRL_EN
rtw_write16(padapter, REG_PWR_DATA, value16);
// DBG_8192C("%s: REG_PWR_DATA(0x%x)=0x%04X\n", __FUNCTION__, REG_PWR_DATA, rtw_read16(padapter, REG_PWR_DATA));
value32 = rtw_read32(padapter, REG_LEDCFG0);
value32 |= BIT(23); // DPDT_SEL_EN, 1 for SW control
rtw_write32(padapter, REG_LEDCFG0, value32);
// DBG_8192C("%s: REG_LEDCFG0(0x%x)=0x%08X\n", __FUNCTION__, REG_LEDCFG0, rtw_read32(padapter, REG_LEDCFG0));
value8 = rtw_read8(padapter, REG_PAD_CTRL1_8703B);
value8 &= ~BIT(0); // BIT_SW_DPDT_SEL_DATA, DPDT_SEL default configuration
rtw_write8(padapter, REG_PAD_CTRL1_8703B, value8);
// DBG_8192C("%s: REG_PAD_CTRL1(0x%x)=0x%02X\n", __FUNCTION__, REG_PAD_CTRL1_8703B, rtw_read8(padapter, REG_PAD_CTRL1_8703B));
#endif // CONFIG_BT_COEXIST
return _SUCCESS;
}
//Tx Page FIFO threshold
static void _init_available_page_threshold(PADAPTER padapter, u8 numHQ, u8 numNQ, u8 numLQ, u8 numPubQ)
{
u16 HQ_threshold, NQ_threshold, LQ_threshold;
HQ_threshold = (numPubQ + numHQ + 1) >> 1;
HQ_threshold |= (HQ_threshold<<8);
NQ_threshold = (numPubQ + numNQ + 1) >> 1;
NQ_threshold |= (NQ_threshold<<8);
LQ_threshold = (numPubQ + numLQ + 1) >> 1;
LQ_threshold |= (LQ_threshold<<8);
rtw_write16(padapter, 0x218, HQ_threshold);
rtw_write16(padapter, 0x21A, NQ_threshold);
rtw_write16(padapter, 0x21C, LQ_threshold);
DBG_8192C("%s(): Enable Tx FIFO Page Threshold H:0x%x,N:0x%x,L:0x%x\n", __FUNCTION__, HQ_threshold, NQ_threshold, LQ_threshold);
}
static void _InitQueueReservedPage(PADAPTER padapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct registry_priv *pregistrypriv = &padapter->registrypriv;
u32 outEPNum = (u32)pHalData->OutEpNumber;
u32 numHQ = 0;
u32 numLQ = 0;
u32 numNQ = 0;
u32 numPubQ;
u32 value32;
u8 value8;
BOOLEAN bWiFiConfig = pregistrypriv->wifi_spec;
if (pHalData->OutEpQueueSel & TX_SELE_HQ)
{
numHQ = bWiFiConfig ? WMM_NORMAL_PAGE_NUM_HPQ_8703B : NORMAL_PAGE_NUM_HPQ_8703B;
}
if (pHalData->OutEpQueueSel & TX_SELE_LQ)
{
numLQ = bWiFiConfig ? WMM_NORMAL_PAGE_NUM_LPQ_8703B : NORMAL_PAGE_NUM_LPQ_8703B;
}
// NOTE: This step shall be proceed before writting REG_RQPN.
if (pHalData->OutEpQueueSel & TX_SELE_NQ) {
numNQ = bWiFiConfig ? WMM_NORMAL_PAGE_NUM_NPQ_8703B : NORMAL_PAGE_NUM_NPQ_8703B;
}
numPubQ = TX_TOTAL_PAGE_NUMBER_8703B - numHQ - numLQ - numNQ;
value8 = (u8)_NPQ(numNQ);
rtw_write8(padapter, REG_RQPN_NPQ, value8);
// TX DMA
value32 = _HPQ(numHQ) | _LPQ(numLQ) | _PUBQ(numPubQ) | LD_RQPN;
rtw_write32(padapter, REG_RQPN, value32);
rtw_hal_set_sdio_tx_max_length(padapter, numHQ, numNQ, numLQ, numPubQ);
#ifdef CONFIG_SDIO_TX_ENABLE_AVAL_INT
_init_available_page_threshold(padapter, numHQ, numNQ, numLQ, numPubQ);
#endif
}
static void _InitTxBufferBoundary(PADAPTER padapter)
{
struct registry_priv *pregistrypriv = &padapter->registrypriv;
#ifdef CONFIG_CONCURRENT_MODE
u8 val8;
#endif // CONFIG_CONCURRENT_MODE
//u16 txdmactrl;
u8 txpktbuf_bndy;
if (!pregistrypriv->wifi_spec) {
txpktbuf_bndy = TX_PAGE_BOUNDARY_8703B;
} else {
//for WMM
txpktbuf_bndy = WMM_NORMAL_TX_PAGE_BOUNDARY_8703B;
}
rtw_write8(padapter, REG_TXPKTBUF_BCNQ_BDNY_8703B, txpktbuf_bndy);
rtw_write8(padapter, REG_TXPKTBUF_MGQ_BDNY_8703B, txpktbuf_bndy);
rtw_write8(padapter, REG_TXPKTBUF_WMAC_LBK_BF_HD_8703B, txpktbuf_bndy);
rtw_write8(padapter, REG_TRXFF_BNDY, txpktbuf_bndy);
rtw_write8(padapter, REG_TDECTRL+1, txpktbuf_bndy);
#ifdef CONFIG_CONCURRENT_MODE
val8 = txpktbuf_bndy + BCNQ_PAGE_NUM_8703B + WOWLAN_PAGE_NUM_8703B;
rtw_write8(padapter, REG_BCNQ1_BDNY, val8);
rtw_write8(padapter, REG_DWBCN1_CTRL_8703B+1, val8); // BCN1_HEAD
val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8703B+2);
val8 |= BIT(1); // BIT1- BIT_SW_BCN_SEL_EN
rtw_write8(padapter, REG_DWBCN1_CTRL_8703B+2, val8);
#endif // CONFIG_CONCURRENT_MODE
}
static VOID
_InitNormalChipRegPriority(
IN PADAPTER Adapter,
IN u16 beQ,
IN u16 bkQ,
IN u16 viQ,
IN u16 voQ,
IN u16 mgtQ,
IN u16 hiQ
)
{
u16 value16 = (rtw_read16(Adapter, REG_TRXDMA_CTRL) & 0x7);
value16 |= _TXDMA_BEQ_MAP(beQ) | _TXDMA_BKQ_MAP(bkQ) |
_TXDMA_VIQ_MAP(viQ) | _TXDMA_VOQ_MAP(voQ) |
_TXDMA_MGQ_MAP(mgtQ)| _TXDMA_HIQ_MAP(hiQ);
rtw_write16(Adapter, REG_TRXDMA_CTRL, value16);
}
static VOID
_InitNormalChipOneOutEpPriority(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u16 value = 0;
switch(pHalData->OutEpQueueSel)
{
case TX_SELE_HQ:
value = QUEUE_HIGH;
break;
case TX_SELE_LQ:
value = QUEUE_LOW;
break;
case TX_SELE_NQ:
value = QUEUE_NORMAL;
break;
default:
//RT_ASSERT(FALSE,("Shall not reach here!\n"));
break;
}
_InitNormalChipRegPriority(Adapter,
value,
value,
value,
value,
value,
value
);
}
static VOID
_InitNormalChipTwoOutEpPriority(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct registry_priv *pregistrypriv = &Adapter->registrypriv;
u16 beQ,bkQ,viQ,voQ,mgtQ,hiQ;
u16 valueHi = 0;
u16 valueLow = 0;
switch(pHalData->OutEpQueueSel)
{
case (TX_SELE_HQ | TX_SELE_LQ):
valueHi = QUEUE_HIGH;
valueLow = QUEUE_LOW;
break;
case (TX_SELE_NQ | TX_SELE_LQ):
valueHi = QUEUE_NORMAL;
valueLow = QUEUE_LOW;
break;
case (TX_SELE_HQ | TX_SELE_NQ):
valueHi = QUEUE_HIGH;
valueLow = QUEUE_NORMAL;
break;
default:
//RT_ASSERT(FALSE,("Shall not reach here!\n"));
break;
}
if(!pregistrypriv->wifi_spec ){
beQ = valueLow;
bkQ = valueLow;
viQ = valueHi;
voQ = valueHi;
mgtQ = valueHi;
hiQ = valueHi;
}
else{//for WMM ,CONFIG_OUT_EP_WIFI_MODE
beQ = valueLow;
bkQ = valueHi;
viQ = valueHi;
voQ = valueLow;
mgtQ = valueHi;
hiQ = valueHi;
}
_InitNormalChipRegPriority(Adapter,beQ,bkQ,viQ,voQ,mgtQ,hiQ);
}
static VOID
_InitNormalChipThreeOutEpPriority(
IN PADAPTER padapter
)
{
struct registry_priv *pregistrypriv = &padapter->registrypriv;
u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
if (!pregistrypriv->wifi_spec){// typical setting
beQ = QUEUE_LOW;
bkQ = QUEUE_LOW;
viQ = QUEUE_NORMAL;
voQ = QUEUE_HIGH;
mgtQ = QUEUE_HIGH;
hiQ = QUEUE_HIGH;
}
else {// for WMM
beQ = QUEUE_LOW;
bkQ = QUEUE_NORMAL;
viQ = QUEUE_NORMAL;
voQ = QUEUE_HIGH;
mgtQ = QUEUE_HIGH;
hiQ = QUEUE_HIGH;
}
_InitNormalChipRegPriority(padapter,beQ,bkQ,viQ,voQ,mgtQ,hiQ);
}
static VOID
_InitNormalChipQueuePriority(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
switch(pHalData->OutEpNumber)
{
case 1:
_InitNormalChipOneOutEpPriority(Adapter);
break;
case 2:
_InitNormalChipTwoOutEpPriority(Adapter);
break;
case 3:
_InitNormalChipThreeOutEpPriority(Adapter);
break;
default:
//RT_ASSERT(FALSE,("Shall not reach here!\n"));
break;
}
}
static void _InitQueuePriority(PADAPTER padapter)
{
_InitNormalChipQueuePriority(padapter);
}
static void _InitPageBoundary(PADAPTER padapter)
{
// RX Page Boundary
u16 rxff_bndy = RX_DMA_BOUNDARY_8703B;
rtw_write16(padapter, (REG_TRXFF_BNDY + 2), rxff_bndy);
}
static void _InitTransferPageSize(PADAPTER padapter)
{
// Tx page size is always 128.
u8 value8;
value8 = _PSRX(PBP_128) | _PSTX(PBP_128);
rtw_write8(padapter, REG_PBP, value8);
}
void _InitDriverInfoSize(PADAPTER padapter, u8 drvInfoSize)
{
rtw_write8(padapter, REG_RX_DRVINFO_SZ, drvInfoSize);
}
void _InitNetworkType(PADAPTER padapter)
{
u32 value32;
value32 = rtw_read32(padapter, REG_CR);
// TODO: use the other function to set network type
// value32 = (value32 & ~MASK_NETTYPE) | _NETTYPE(NT_LINK_AD_HOC);
value32 = (value32 & ~MASK_NETTYPE) | _NETTYPE(NT_LINK_AP);
rtw_write32(padapter, REG_CR, value32);
}
void _InitWMACSetting(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData;
u16 value16;
pHalData = GET_HAL_DATA(padapter);
pHalData->ReceiveConfig = 0;
pHalData->ReceiveConfig |= RCR_APM | RCR_AM | RCR_AB;
pHalData->ReceiveConfig |= RCR_CBSSID_DATA | RCR_CBSSID_BCN | RCR_AMF;
pHalData->ReceiveConfig |= RCR_HTC_LOC_CTRL;
pHalData->ReceiveConfig |= RCR_APP_PHYST_RXFF | RCR_APP_ICV | RCR_APP_MIC;
#ifdef CONFIG_MAC_LOOPBACK_DRIVER
pHalData->ReceiveConfig |= RCR_AAP;
pHalData->ReceiveConfig |= RCR_ADD3 | RCR_APWRMGT | RCR_ACRC32 | RCR_ADF;
#endif
rtw_write32(padapter, REG_RCR, pHalData->ReceiveConfig);
// Accept all multicast address
rtw_write32(padapter, REG_MAR, 0xFFFFFFFF);
rtw_write32(padapter, REG_MAR + 4, 0xFFFFFFFF);
// Accept all data frames
value16 = 0xFFFF;
rtw_write16(padapter, REG_RXFLTMAP2, value16);
// 2010.09.08 hpfan
// Since ADF is removed from RCR, ps-poll will not be indicate to driver,
// RxFilterMap should mask ps-poll to gurantee AP mode can rx ps-poll.
value16 = 0x400;
rtw_write16(padapter, REG_RXFLTMAP1, value16);
// Accept all management frames
value16 = 0xFFFF;
rtw_write16(padapter, REG_RXFLTMAP0, value16);
}
void _InitAdaptiveCtrl(PADAPTER padapter)
{
u16 value16;
u32 value32;
// Response Rate Set
value32 = rtw_read32(padapter, REG_RRSR);
value32 &= ~RATE_BITMAP_ALL;
value32 |= RATE_RRSR_CCK_ONLY_1M;
rtw_write32(padapter, REG_RRSR, value32);
// CF-END Threshold
//m_spIoBase->rtw_write8(REG_CFEND_TH, 0x1);
// SIFS (used in NAV)
value16 = _SPEC_SIFS_CCK(0x10) | _SPEC_SIFS_OFDM(0x10);
rtw_write16(padapter, REG_SPEC_SIFS, value16);
// Retry Limit
value16 = _LRL(0x30) | _SRL(0x30);
rtw_write16(padapter, REG_RL, value16);
}
void _InitEDCA(PADAPTER padapter)
{
// Set Spec SIFS (used in NAV)
rtw_write16(padapter, REG_SPEC_SIFS, 0x100a);
rtw_write16(padapter, REG_MAC_SPEC_SIFS, 0x100a);
// Set SIFS for CCK
rtw_write16(padapter, REG_SIFS_CTX, 0x100a);
// Set SIFS for OFDM
rtw_write16(padapter, REG_SIFS_TRX, 0x100a);
// TXOP
rtw_write32(padapter, REG_EDCA_BE_PARAM, 0x005EA42B);
rtw_write32(padapter, REG_EDCA_BK_PARAM, 0x0000A44F);
rtw_write32(padapter, REG_EDCA_VI_PARAM, 0x005EA324);
rtw_write32(padapter, REG_EDCA_VO_PARAM, 0x002FA226);
}
void _InitRateFallback(PADAPTER padapter)
{
// Set Data Auto Rate Fallback Retry Count register.
rtw_write32(padapter, REG_DARFRC, 0x00000000);
rtw_write32(padapter, REG_DARFRC+4, 0x10080404);
rtw_write32(padapter, REG_RARFRC, 0x04030201);
rtw_write32(padapter, REG_RARFRC+4, 0x08070605);
}
void _InitRetryFunction(PADAPTER padapter)
{
u8 value8;
value8 = rtw_read8(padapter, REG_FWHW_TXQ_CTRL);
value8 |= EN_AMPDU_RTY_NEW;
rtw_write8(padapter, REG_FWHW_TXQ_CTRL, value8);
// Set ACK timeout
rtw_write8(padapter, REG_ACKTO, 0x40);
}
static void HalRxAggr8703BSdio(PADAPTER padapter)
{
struct registry_priv *pregistrypriv;
u8 valueDMATimeout;
u8 valueDMAPageCount;
pregistrypriv = &padapter->registrypriv;
if (pregistrypriv->wifi_spec)
{
// 2010.04.27 hpfan
// Adjust RxAggrTimeout to close to zero disable RxAggr, suggested by designer
// Timeout value is calculated by 34 / (2^n)
valueDMATimeout = 0x06;
valueDMAPageCount = 0x06;
}
else
{
// 20130530, Isaac@SD1 suggest 3 kinds of parameter
#if 1
// TX/RX Balance
valueDMATimeout = 0x06;
valueDMAPageCount = 0x06;
#endif
#if 0
// TX/RX Balance, but TCP ack may be late
valueDMATimeout = 0x16;
valueDMAPageCount = 0x06;
#endif
#if 0
// RX Best
valueDMATimeout = 0x16;
valueDMAPageCount = 0x08;
#endif
}
#ifdef CONFIG_DONT_CARE_TP
valueDMATimeout = 0x0f;
valueDMAPageCount = 0x04; //RxAggUpthreshold = [4]*1K bytes+1.5k. since RxAggUpthreshold+SzAmsdu(3839)<MaxRxBuffSize(8k), MaxvalueDMAPageCount=4.
#endif
rtw_write8(padapter, REG_RXDMA_AGG_PG_TH+1, valueDMATimeout);
rtw_write8(padapter, REG_RXDMA_AGG_PG_TH, valueDMAPageCount);
}
void sdio_AggSettingRxUpdate(PADAPTER padapter)
{
HAL_DATA_TYPE *pHalData;
u8 valueDMA;
u8 valueRxAggCtrl = 0;
u8 aggBurstNum = 3; //0:1, 1:2, 2:3, 3:4
u8 aggBurstSize = 0; //0:1K, 1:512Byte, 2:256Byte...
pHalData = GET_HAL_DATA(padapter);
valueDMA = rtw_read8(padapter, REG_TRXDMA_CTRL);
valueDMA |= RXDMA_AGG_EN;
rtw_write8(padapter, REG_TRXDMA_CTRL, valueDMA);
valueRxAggCtrl |= RXDMA_AGG_MODE_EN;
valueRxAggCtrl |= ((aggBurstNum<<2) & 0x0C);
valueRxAggCtrl |= ((aggBurstSize<<4) & 0x30);
rtw_write8(padapter, REG_RXDMA_MODE_CTRL_8703B, valueRxAggCtrl);//RxAggLowThresh = 4*1K
}
void _initSdioAggregationSetting(PADAPTER padapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
// Tx aggregation setting
// sdio_AggSettingTxUpdate(padapter);
// Rx aggregation setting
HalRxAggr8703BSdio(padapter);
sdio_AggSettingRxUpdate(padapter);
}
static void _RXAggrSwitch(PADAPTER padapter, u8 enable)
{
PHAL_DATA_TYPE pHalData;
u8 valueDMA;
u8 valueRxAggCtrl;
pHalData = GET_HAL_DATA(padapter);
valueDMA = rtw_read8(padapter, REG_TRXDMA_CTRL);
valueRxAggCtrl = rtw_read8(padapter, REG_RXDMA_MODE_CTRL_8703B);
if (_TRUE == enable)
{
valueDMA |= RXDMA_AGG_EN;
valueRxAggCtrl |= RXDMA_AGG_MODE_EN;
}
else
{
valueDMA &= ~RXDMA_AGG_EN;
valueRxAggCtrl &= ~RXDMA_AGG_MODE_EN;
}
rtw_write8(padapter, REG_TRXDMA_CTRL, valueDMA);
rtw_write8(padapter, REG_RXDMA_MODE_CTRL_8703B, valueRxAggCtrl);
}
void _InitOperationMode(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData;
struct mlme_ext_priv *pmlmeext;
u8 regBwOpMode = 0;
u32 regRATR = 0, regRRSR = 0;
u8 MinSpaceCfg = 0;
pHalData = GET_HAL_DATA(padapter);
pmlmeext = &padapter->mlmeextpriv;
//1 This part need to modified according to the rate set we filtered!!
//
// Set RRSR, RATR, and REG_BWOPMODE registers
//
switch(pmlmeext->cur_wireless_mode)
{
case WIRELESS_MODE_B:
regBwOpMode = BW_OPMODE_20MHZ;
regRATR = RATE_ALL_CCK;
regRRSR = RATE_ALL_CCK;
break;
case WIRELESS_MODE_A:
// RT_ASSERT(FALSE,("Error wireless a mode\n"));
#if 0
regBwOpMode = BW_OPMODE_5G |BW_OPMODE_20MHZ;
regRATR = RATE_ALL_OFDM_AG;
regRRSR = RATE_ALL_OFDM_AG;
#endif
break;
case WIRELESS_MODE_G:
regBwOpMode = BW_OPMODE_20MHZ;
regRATR = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
regRRSR = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
break;
case WIRELESS_MODE_AUTO:
#if 0
if (padapter->bInHctTest)
{
regBwOpMode = BW_OPMODE_20MHZ;
regRATR = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
regRRSR = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
}
else
#endif
{
regBwOpMode = BW_OPMODE_20MHZ;
regRATR = RATE_ALL_CCK | RATE_ALL_OFDM_AG | RATE_ALL_OFDM_1SS | RATE_ALL_OFDM_2SS;
regRRSR = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
}
break;
case WIRELESS_MODE_N_24G:
// It support CCK rate by default.
// CCK rate will be filtered out only when associated AP does not support it.
regBwOpMode = BW_OPMODE_20MHZ;
regRATR = RATE_ALL_CCK | RATE_ALL_OFDM_AG | RATE_ALL_OFDM_1SS | RATE_ALL_OFDM_2SS;
regRRSR = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
break;
case WIRELESS_MODE_N_5G:
// RT_ASSERT(FALSE,("Error wireless mode"));
#if 0
regBwOpMode = BW_OPMODE_5G;
regRATR = RATE_ALL_OFDM_AG | RATE_ALL_OFDM_1SS | RATE_ALL_OFDM_2SS;
regRRSR = RATE_ALL_OFDM_AG;
#endif
break;
default: //for MacOSX compiler warning.
break;
}
rtw_write8(padapter, REG_BWOPMODE, regBwOpMode);
}
void _InitInterrupt(PADAPTER padapter)
{
// HISR - turn all off
rtw_write32(padapter, REG_HISR, 0);
// HIMR - turn all off
rtw_write32(padapter, REG_HIMR, 0);
//
// Initialize and enable SDIO Host Interrupt.
//
InitInterrupt8703BSdio(padapter);
//
// Initialize system Host Interrupt.
//
InitSysInterrupt8703BSdio(padapter);
}
void _InitRDGSetting(PADAPTER padapter)
{
rtw_write8(padapter, REG_RD_CTRL, 0xFF);
rtw_write16(padapter, REG_RD_NAV_NXT, 0x200);
rtw_write8(padapter, REG_RD_RESP_PKT_TH, 0x05);
}
static void _InitRFType(PADAPTER padapter)
{
struct registry_priv *pregpriv = &padapter->registrypriv;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
#if DISABLE_BB_RF
pHalData->rf_chip = RF_PSEUDO_11N;
return;
#endif
pHalData->rf_chip = RF_6052;
MSG_8192C("Set RF Chip ID to RF_6052 and RF type to %d.\n", pHalData->rf_type);
}
// Set CCK and OFDM Block "ON"
static void _BBTurnOnBlock(PADAPTER padapter)
{
#if (DISABLE_BB_RF)
return;
#endif
PHY_SetBBReg(padapter, rFPGA0_RFMOD, bCCKEn, 0x1);
PHY_SetBBReg(padapter, rFPGA0_RFMOD, bOFDMEn, 0x1);
}
static void _RfPowerSave(PADAPTER padapter)
{
//YJ,TODO
}
static void _InitAntenna_Selection(PADAPTER padapter)
{
rtw_write8(padapter, REG_LEDCFG2, 0x82);
}
static void _InitPABias(PADAPTER padapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u8 pa_setting;
//FIXED PA current issue
//efuse_one_byte_read(padapter, 0x1FA, &pa_setting);
pa_setting = EFUSE_Read1Byte(padapter, 0x1FA);
//RT_TRACE(COMP_INIT, DBG_LOUD, ("_InitPABias 0x1FA 0x%x \n",pa_setting));
if(!(pa_setting & BIT0))
{
PHY_SetRFReg(padapter, RF_PATH_A, 0x15, 0x0FFFFF, 0x0F406);
PHY_SetRFReg(padapter, RF_PATH_A, 0x15, 0x0FFFFF, 0x4F406);
PHY_SetRFReg(padapter, RF_PATH_A, 0x15, 0x0FFFFF, 0x8F406);
PHY_SetRFReg(padapter, RF_PATH_A, 0x15, 0x0FFFFF, 0xCF406);
//RT_TRACE(COMP_INIT, DBG_LOUD, ("PA BIAS path A\n"));
}
if(!(pa_setting & BIT4))
{
pa_setting = rtw_read8(padapter, 0x16);
pa_setting &= 0x0F;
rtw_write8(padapter, 0x16, pa_setting | 0x80);
rtw_write8(padapter, 0x16, pa_setting | 0x90);
}
}
VOID _InitBBRegBackup_8703BS(PADAPTER Adapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
/* For Channel 1~11 (Default Value)*/
pHalData->RegForRecover[0].offset = rCCK0_TxFilter2;
pHalData->RegForRecover[0].value = PHY_QueryBBReg(Adapter, pHalData->RegForRecover[0].offset, bMaskDWord);
pHalData->RegForRecover[1].offset = rCCK0_DebugPort;
pHalData->RegForRecover[1].value = PHY_QueryBBReg(Adapter, pHalData->RegForRecover[1].offset, bMaskDWord);
/* For 20 MHz (Default Value)*/
pHalData->RegForRecover[2].offset = rBBrx_DFIR;
pHalData->RegForRecover[2].value = PHY_QueryBBReg(Adapter, pHalData->RegForRecover[2].offset, bMaskDWord);
pHalData->RegForRecover[3].offset = rOFDM0_XATxAFE;
pHalData->RegForRecover[3].value = PHY_QueryBBReg(Adapter, pHalData->RegForRecover[3].offset, bMaskDWord);
pHalData->RegForRecover[4].offset = 0x1E;
pHalData->RegForRecover[4].value = PHY_QueryRFReg(Adapter, ODM_RF_PATH_A, pHalData->RegForRecover[4].offset, bRFRegOffsetMask);
}
//
// 2010/08/09 MH Add for power down check.
//
static BOOLEAN HalDetectPwrDownMode(PADAPTER Adapter)
{
u8 tmpvalue;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct pwrctrl_priv *pwrctrlpriv = adapter_to_pwrctl(Adapter);
EFUSE_ShadowRead(Adapter, 1, EEPROM_FEATURE_OPTION_8703B, (u32 *)&tmpvalue);
// 2010/08/25 MH INF priority > PDN Efuse value.
if(tmpvalue & BIT4 && pwrctrlpriv->reg_pdnmode)
{
pHalData->pwrdown = _TRUE;
}
else
{
pHalData->pwrdown = _FALSE;
}
DBG_8192C("HalDetectPwrDownMode(): PDN=%d\n", pHalData->pwrdown);
return pHalData->pwrdown;
} // HalDetectPwrDownMode
static u32 rtl8703bs_hal_init(PADAPTER padapter)
{
s32 ret;
PHAL_DATA_TYPE pHalData;
struct pwrctrl_priv *pwrctrlpriv;
struct registry_priv *pregistrypriv;
struct sreset_priv *psrtpriv;
struct dvobj_priv *psdpriv = padapter->dvobj;
struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
rt_rf_power_state eRfPowerStateToSet;
u32 NavUpper = WiFiNavUpperUs;
u8 u1bTmp;
u16 value16;
u8 typeid;
u32 u4Tmp;
pHalData = GET_HAL_DATA(padapter);
psrtpriv = &pHalData->srestpriv;
pwrctrlpriv = adapter_to_pwrctl(padapter);
pregistrypriv = &padapter->registrypriv;
#ifdef CONFIG_SWLPS_IN_IPS
if (adapter_to_pwrctl(padapter)->bips_processing == _TRUE)
{
u8 val8, bMacPwrCtrlOn = _TRUE;
DBG_871X("%s: run LPS flow in IPS\n", __FUNCTION__);
//ser rpwm
val8 = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HRPWM1);
val8 &= 0x80;
val8 += 0x80;
val8 |= BIT(6);
rtw_write8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HRPWM1, val8);
adapter_to_pwrctl(padapter)->tog = (val8 + 0x80) & 0x80;
rtw_mdelay_os(5); //wait set rpwm already
ret = HalPwrSeqCmdParsing(padapter, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_SDIO_MSK, rtl8703B_leave_swlps_flow);
if (ret == _FALSE) {
DBG_8192C("%s: run LPS flow in IPS fail!\n", __FUNCTION__);
return _FAIL;
}
rtw_hal_set_hwreg(padapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn);
pHalData->LastHMEBoxNum = 0;
#ifdef CONFIG_BT_COEXIST
rtw_btcoex_HAL_Initialize(padapter, _FALSE);
#else
rtw_btcoex_HAL_Initialize(padapter, _TRUE);
#endif // CONFIG_BT_COEXIST
return _SUCCESS;
}
#elif defined(CONFIG_FWLPS_IN_IPS)
if (adapter_to_pwrctl(padapter)->bips_processing == _TRUE && psrtpriv->silent_reset_inprogress == _FALSE
&& adapter_to_pwrctl(padapter)->pre_ips_type == 0)
{
u32 start_time;
u8 cpwm_orig, cpwm_now;
u8 val8, bMacPwrCtrlOn = _TRUE;
DBG_871X("%s: Leaving IPS in FWLPS state\n", __FUNCTION__);
//for polling cpwm
cpwm_orig = 0;
rtw_hal_get_hwreg(padapter, HW_VAR_CPWM, &cpwm_orig);
//ser rpwm
val8 = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HRPWM1);
val8 &= 0x80;
val8 += 0x80;
val8 |= BIT(6);
rtw_write8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HRPWM1, val8);
DBG_871X("%s: write rpwm=%02x\n", __FUNCTION__, val8);
adapter_to_pwrctl(padapter)->tog = (val8 + 0x80) & 0x80;
//do polling cpwm
start_time = rtw_get_current_time();
do {
rtw_mdelay_os(1);
rtw_hal_get_hwreg(padapter, HW_VAR_CPWM, &cpwm_now);
if ((cpwm_orig ^ cpwm_now) & 0x80)
{
#ifdef DBG_CHECK_FW_PS_STATE
DBG_871X("%s: polling cpwm ok when leaving IPS in FWLPS state, cpwm_orig=%02x, cpwm_now=%02x, 0x100=0x%x \n"
, __FUNCTION__, cpwm_orig, cpwm_now, rtw_read8(padapter, REG_CR));
#endif //DBG_CHECK_FW_PS_STATE
break;
}
if (rtw_get_passing_time_ms(start_time) > 100)
{
DBG_871X("%s: polling cpwm timeout when leaving IPS in FWLPS state\n", __FUNCTION__);
break;
}
} while (1);
rtl8703b_set_FwPwrModeInIPS_cmd(padapter, 0);
rtw_hal_set_hwreg(padapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn);
#ifdef CONFIG_BT_COEXIST
rtw_btcoex_HAL_Initialize(padapter, _FALSE);
#else
rtw_btcoex_HAL_Initialize(padapter, _TRUE);
#endif // CONFIG_BT_COEXIST
#ifdef DBG_CHECK_FW_PS_STATE
if(rtw_fw_ps_state(padapter) == _FAIL)
{
DBG_871X("after hal init, fw ps state in 32k\n");
pdbgpriv->dbg_ips_drvopen_fail_cnt++;
}
#endif //DBG_CHECK_FW_PS_STATE
return _SUCCESS;
}
#endif //CONFIG_SWLPS_IN_IPS
// Disable Interrupt first.
// rtw_hal_disable_interrupt(padapter);
if(rtw_read8(padapter, REG_MCUFWDL) == 0xc6) {
DBG_871X("FW exist before power on!!\n");
} else {
DBG_871X("FW does not exist before power on!!\n");
}
if(rtw_fw_ps_state(padapter) == _FAIL)
{
DBG_871X("check fw_ps_state fail before PowerOn!\n");
pdbgpriv->dbg_ips_drvopen_fail_cnt++;
}
ret = rtw_hal_power_on(padapter);
if (_FAIL == ret) {
RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("Failed to init Power On!\n"));
return _FAIL;
}
DBG_871X("Power on ok!\n");
if(rtw_fw_ps_state(padapter) == _FAIL)
{
DBG_871X("check fw_ps_state fail after PowerOn!\n");
pdbgpriv->dbg_ips_drvopen_fail_cnt++;
}
rtw_write8(padapter, REG_EARLY_MODE_CONTROL, 0);
if (padapter->registrypriv.mp_mode == 0) {
ret = rtl8703b_FirmwareDownload(padapter, _FALSE);
if (ret != _SUCCESS) {
RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("%s: Download Firmware failed!!\n", __FUNCTION__));
padapter->bFWReady = _FALSE;
pHalData->fw_ractrl = _FALSE;
return ret;
} else {
RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("rtl8703bs_hal_init(): Download Firmware Success!!\n"));
padapter->bFWReady = _TRUE;
pHalData->fw_ractrl = _TRUE;
}
}
// SIC_Init(padapter);
if (pwrctrlpriv->reg_rfoff == _TRUE) {
pwrctrlpriv->rf_pwrstate = rf_off;
}
// 2010/08/09 MH We need to check if we need to turnon or off RF after detecting
// HW GPIO pin. Before PHY_RFConfig8192C.
HalDetectPwrDownMode(padapter);
// Set RF type for BB/RF configuration
_InitRFType(padapter);
// Save target channel
// <Roger_Notes> Current Channel will be updated again later.
pHalData->CurrentChannel = 6;
#if (HAL_MAC_ENABLE == 1)
ret = PHY_MACConfig8703B(padapter);
if(ret != _SUCCESS){
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Initializepadapter8192CSdio(): Fail to configure MAC!!\n"));
return ret;
}
#endif
//
//d. Initialize BB related configurations.
//
#if (HAL_BB_ENABLE == 1)
ret = PHY_BBConfig8703B(padapter);
if(ret != _SUCCESS){
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Initializepadapter8192CSdio(): Fail to configure BB!!\n"));
return ret;
}
#endif
// If RF is on, we need to init RF. Otherwise, skip the procedure.
// We need to follow SU method to change the RF cfg.txt. Default disable RF TX/RX mode.
//if(pHalData->eRFPowerState == eRfOn)
{
#if (HAL_RF_ENABLE == 1)
ret = PHY_RFConfig8703B(padapter);
if(ret != _SUCCESS){
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Initializepadapter8192CSdio(): Fail to configure RF!!\n"));
return ret;
}
#endif
}
_InitBBRegBackup_8703BS(padapter);
_InitMacAPLLSetting_8703B(padapter);
//
// Joseph Note: Keep RfRegChnlVal for later use.
//
pHalData->RfRegChnlVal[0] = PHY_QueryRFReg(padapter, (RF_PATH)0, RF_CHNLBW, bRFRegOffsetMask);
pHalData->RfRegChnlVal[1] = PHY_QueryRFReg(padapter, (RF_PATH)1, RF_CHNLBW, bRFRegOffsetMask);
#if 0
/* Specially add for FWDL by Tx pkt write. Reset Tx/Rx DMA since the Tx boundary setting
is changed during FW download */
rtw_write8(padapter, REG_CR, 0x00);
rtw_write8(padapter, REG_CR, 0xFF);
#endif
//if (!pHalData->bMACFuncEnable) {
_InitQueueReservedPage(padapter);
_InitTxBufferBoundary(padapter);
// init LLT after tx buffer boundary is defined
ret = rtl8703b_InitLLTTable(padapter);
if (_SUCCESS != ret)
{
DBG_8192C("%s: Failed to init LLT Table!\n", __FUNCTION__);
return _FAIL;
}
//}
_InitQueuePriority(padapter);
_InitPageBoundary(padapter);
_InitTransferPageSize(padapter);
// Get Rx PHY status in order to report RSSI and others.
_InitDriverInfoSize(padapter, DRVINFO_SZ);
hal_init_macaddr(padapter);
_InitNetworkType(padapter);
_InitWMACSetting(padapter);
_InitAdaptiveCtrl(padapter);
_InitEDCA(padapter);
//_InitRateFallback(padapter);
_InitRetryFunction(padapter);
_initSdioAggregationSetting(padapter);
_InitOperationMode(padapter);
rtl8703b_InitBeaconParameters(padapter);
rtl8703b_InitBeaconMaxError(padapter, _TRUE);
_InitInterrupt(padapter);
_InitBurstPktLen_8703BS(padapter);
#if 0
// 8703B new ADD
_InitLTECoex_8703BS(padapter);
#endif
//YJ,TODO
rtw_write8(padapter, REG_SECONDARY_CCA_CTRL_8703B, 0x3); // CCA
rtw_write8(padapter, 0x976, 0); // hpfan_todo: 2nd CCA related
#if defined(CONFIG_CONCURRENT_MODE) || defined(CONFIG_TX_MCAST2UNI)
#ifdef CONFIG_CHECK_AC_LIFETIME
// Enable lifetime check for the four ACs
rtw_write8(padapter, REG_LIFETIME_EN, 0x0F);
#endif // CONFIG_CHECK_AC_LIFETIME
#ifdef CONFIG_TX_MCAST2UNI
rtw_write16(padapter, REG_PKT_VO_VI_LIFE_TIME, 0x0400); // unit: 256us. 256ms
rtw_write16(padapter, REG_PKT_BE_BK_LIFE_TIME, 0x0400); // unit: 256us. 256ms
#else // CONFIG_TX_MCAST2UNI
rtw_write16(padapter, REG_PKT_VO_VI_LIFE_TIME, 0x3000); // unit: 256us. 3s
rtw_write16(padapter, REG_PKT_BE_BK_LIFE_TIME, 0x3000); // unit: 256us. 3s
#endif // CONFIG_TX_MCAST2UNI
#endif // CONFIG_CONCURRENT_MODE || CONFIG_TX_MCAST2UNI
invalidate_cam_all(padapter);
rtw_hal_set_chnl_bw(padapter, padapter->registrypriv.channel,
CHANNEL_WIDTH_20, HAL_PRIME_CHNL_OFFSET_DONT_CARE, HAL_PRIME_CHNL_OFFSET_DONT_CARE);
// Record original value for template. This is arough data, we can only use the data
// for power adjust. The value can not be adjustde according to different power!!!
// pHalData->OriginalCckTxPwrIdx = pHalData->CurrentCckTxPwrIdx;
// pHalData->OriginalOfdm24GTxPwrIdx = pHalData->CurrentOfdm24GTxPwrIdx;
rtl8703b_InitAntenna_Selection(padapter);
//
// Disable BAR, suggested by Scott
// 2010.04.09 add by hpfan
//
rtw_write32(padapter, REG_BAR_MODE_CTRL, 0x0201ffff);
// HW SEQ CTRL
// set 0x0 to 0xFF by tynli. Default enable HW SEQ NUM.
rtw_write8(padapter, REG_HWSEQ_CTRL, 0xFF);
#ifdef CONFIG_MAC_LOOPBACK_DRIVER
u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN);
u1bTmp &= ~(FEN_BBRSTB|FEN_BB_GLB_RSTn);
rtw_write8(padapter, REG_SYS_FUNC_EN,u1bTmp);
rtw_write8(padapter, REG_RD_CTRL, 0x0F);
rtw_write8(padapter, REG_RD_CTRL+1, 0xCF);
rtw_write8(padapter, REG_TXPKTBUF_WMAC_LBK_BF_HD, 0x80);
rtw_write32(padapter, REG_CR, 0x0b0202ff);
#endif
//
// Configure SDIO TxRx Control to enable Rx DMA timer masking.
// 2010.02.24.
//
rtw_write32(padapter, SDIO_LOCAL_BASE|SDIO_REG_TX_CTRL, 0);
_RfPowerSave(padapter);
rtl8703b_InitHalDm(padapter);
//DbgPrint("pHalData->DefaultTxPwrDbm = %d\n", pHalData->DefaultTxPwrDbm);
// if(pHalData->SwBeaconType < HAL92CSDIO_DEFAULT_BEACON_TYPE) // The lowest Beacon Type that HW can support
// pHalData->SwBeaconType = HAL92CSDIO_DEFAULT_BEACON_TYPE;
//
// Update current Tx FIFO page status.
//
HalQueryTxBufferStatus8703BSdio(padapter);
HalQueryTxOQTBufferStatus8703BSdio(padapter);
pHalData->SdioTxOQTMaxFreeSpace = pHalData->SdioTxOQTFreeSpace;
// Enable MACTXEN/MACRXEN block
u1bTmp = rtw_read8(padapter, REG_CR);
u1bTmp |= (MACTXEN | MACRXEN);
rtw_write8(padapter, REG_CR, u1bTmp);
rtw_hal_set_hwreg(padapter, HW_VAR_NAV_UPPER, (u8*)&NavUpper);
#ifdef CONFIG_XMIT_ACK
//ack for xmit mgmt frames.
rtw_write32(padapter, REG_FWHW_TXQ_CTRL, rtw_read32(padapter, REG_FWHW_TXQ_CTRL)|BIT(12));
#endif //CONFIG_XMIT_ACK
// pHalData->PreRpwmVal = SdioLocalCmd52Read1Byte(padapter, SDIO_REG_HRPWM1) & 0x80;
#if (MP_DRIVER == 1)
if (padapter->registrypriv.mp_mode == 1)
{
padapter->mppriv.channel = pHalData->CurrentChannel;
MPT_InitializeAdapter(padapter, padapter->mppriv.channel);
}
else
#endif //#if (MP_DRIVER == 1)
{
pwrctrlpriv->rf_pwrstate = rf_on;
if(pwrctrlpriv->rf_pwrstate == rf_on)
{
struct pwrctrl_priv *pwrpriv;
u32 start_time;
u8 h2cCmdBuf;
pwrpriv = adapter_to_pwrctl(padapter);
PHY_LCCalibrate_8703B(&pHalData->odmpriv);
/* Inform WiFi FW that it is the beginning of IQK */
h2cCmdBuf = 1;
FillH2CCmd8703B(padapter, H2C_8703B_BT_WLAN_CALIBRATION, 1, &h2cCmdBuf);
start_time = rtw_get_current_time();
do {
if (rtw_read8(padapter, 0x1e7) & 0x01)
break;
rtw_msleep_os(50);
} while (rtw_get_passing_time_ms(start_time) <= 400);
#ifdef CONFIG_BT_COEXIST
rtw_btcoex_IQKNotify(padapter, _TRUE);
#endif
PHY_IQCalibrate_8703B(padapter, _FALSE);
pHalData->bIQKInitialized = _TRUE;
#ifdef CONFIG_BT_COEXIST
rtw_btcoex_IQKNotify(padapter, _FALSE);
#endif
/* Inform WiFi FW that it is the finish of IQK */
h2cCmdBuf = 0;
FillH2CCmd8703B(padapter, H2C_8703B_BT_WLAN_CALIBRATION, 1, &h2cCmdBuf);
ODM_TXPowerTrackingCheck(&pHalData->odmpriv);
}
}
#ifdef CONFIG_BT_COEXIST
/* Init BT hw config.*/
if (padapter->registrypriv.mp_mode == 1)
rtw_btcoex_HAL_Initialize(padapter, _TRUE);
else
rtw_btcoex_HAL_Initialize(padapter, _FALSE);
#endif
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("-%s\n", __FUNCTION__));
return _SUCCESS;
}
static void CardDisableRTL8703BSdio(PADAPTER padapter)
{
u8 u1bTmp;
u16 u2bTmp;
u32 u4bTmp;
u8 bMacPwrCtrlOn;
u8 ret = _FAIL;
// Run LPS WL RFOFF flow
ret = HalPwrSeqCmdParsing(padapter, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_SDIO_MSK, rtl8703B_enter_lps_flow);
if (ret == _FAIL) {
DBG_8192C(KERN_ERR "%s: run RF OFF flow fail!\n", __func__);
}
// ==== Reset digital sequence ======
u1bTmp = rtw_read8(padapter, REG_MCUFWDL);
if ((u1bTmp & RAM_DL_SEL) && padapter->bFWReady) //8051 RAM code
rtl8703b_FirmwareSelfReset(padapter);
// Reset MCU 0x2[10]=0. Suggested by Filen. 2011.01.26. by tynli.
u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
u1bTmp &= ~BIT(2); // 0x2[10], FEN_CPUEN
rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp);
// MCUFWDL 0x80[1:0]=0
// reset MCU ready status
rtw_write8(padapter, REG_MCUFWDL, 0);
// Reset MCU IO Wrapper, added by Roger, 2011.08.30
u1bTmp = rtw_read8(padapter, REG_RSV_CTRL+1);
u1bTmp &= ~BIT(0);
rtw_write8(padapter, REG_RSV_CTRL+1, u1bTmp);
u1bTmp = rtw_read8(padapter, REG_RSV_CTRL+1);
u1bTmp |= BIT(0);
rtw_write8(padapter, REG_RSV_CTRL+1, u1bTmp);
// ==== Reset digital sequence end ======
bMacPwrCtrlOn = _FALSE; // Disable CMD53 R/W
ret = _FALSE;
rtw_hal_set_hwreg(padapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn);
ret = HalPwrSeqCmdParsing(padapter, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_SDIO_MSK, rtl8703B_card_disable_flow);
if (ret == _FALSE) {
DBG_8192C(KERN_ERR "%s: run CARD DISABLE flow fail!\n", __func__);
}
padapter->bFWReady = _FALSE;
}
static u32 rtl8703bs_hal_deinit(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
struct sreset_priv *psrtpriv = &pHalData->srestpriv;
struct dvobj_priv *psdpriv = padapter->dvobj;
struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
#ifdef CONFIG_MP_INCLUDED
if (padapter->registrypriv.mp_mode == 1)
MPT_DeInitAdapter(padapter);
#endif
if (rtw_is_hw_init_completed(padapter)) {
#ifdef CONFIG_SWLPS_IN_IPS
if (adapter_to_pwrctl(padapter)->bips_processing == _TRUE)
{
u8 bMacPwrCtrlOn;
u8 ret = _TRUE;
DBG_871X("%s: run LPS flow in IPS\n", __FUNCTION__);
rtw_write32(padapter, 0x130, 0x0);
rtw_write32(padapter, 0x138, 0x100);
rtw_write8(padapter, 0x13d, 0x1);
bMacPwrCtrlOn = _FALSE; // Disable CMD53 R/W
rtw_hal_set_hwreg(padapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn);
ret = HalPwrSeqCmdParsing(padapter, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_SDIO_MSK, rtl8703B_enter_swlps_flow);
if (ret == _FALSE) {
DBG_8192C("%s: run LPS flow in IPS fail!\n", __FUNCTION__);
return _FAIL;
}
}
else
#elif defined(CONFIG_FWLPS_IN_IPS)
if (adapter_to_pwrctl(padapter)->bips_processing == _TRUE && psrtpriv->silent_reset_inprogress == _FALSE)
{
if(padapter->netif_up == _TRUE)
{
int cnt=0;
u8 val8 = 0;
DBG_871X("%s: issue H2C to FW when entering IPS\n", __FUNCTION__);
rtl8703b_set_FwPwrModeInIPS_cmd(padapter, 0x3);
//poll 0x1cc to make sure H2C command already finished by FW; MAC_0x1cc=0 means H2C done by FW.
do{
val8 = rtw_read8(padapter, REG_HMETFR);
cnt++;
DBG_871X("%s polling REG_HMETFR=0x%x, cnt=%d \n", __FUNCTION__, val8, cnt);
rtw_mdelay_os(10);
}while(cnt<100 && (val8!=0));
//H2C done, enter 32k
if(val8 == 0)
{
//ser rpwm to enter 32k
val8 = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HRPWM1);
val8 += 0x80;
val8 |= BIT(0);
rtw_write8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HRPWM1, val8);
DBG_871X("%s: write rpwm=%02x\n", __FUNCTION__, val8);
adapter_to_pwrctl(padapter)->tog = (val8 + 0x80) & 0x80;
cnt = val8 = 0;
do{
val8 = rtw_read8(padapter, REG_CR);
cnt++;
DBG_871X("%s polling 0x100=0x%x, cnt=%d \n", __FUNCTION__, val8, cnt);
rtw_mdelay_os(10);
}while(cnt<100 && (val8!=0xEA));
#ifdef DBG_CHECK_FW_PS_STATE
if(val8 != 0xEA)
DBG_871X("MAC_1C0=%08x, MAC_1C4=%08x, MAC_1C8=%08x, MAC_1CC=%08x\n", rtw_read32(padapter, 0x1c0), rtw_read32(padapter, 0x1c4)
, rtw_read32(padapter, 0x1c8), rtw_read32(padapter, 0x1cc));
#endif //DBG_CHECK_FW_PS_STATE
}
else
{
DBG_871X("MAC_1C0=%08x, MAC_1C4=%08x, MAC_1C8=%08x, MAC_1CC=%08x\n", rtw_read32(padapter, 0x1c0), rtw_read32(padapter, 0x1c4)
, rtw_read32(padapter, 0x1c8), rtw_read32(padapter, 0x1cc));
}
DBG_871X("polling done when entering IPS, check result : 0x100=0x%x, cnt=%d, MAC_1cc=0x%02x\n"
, rtw_read8(padapter, REG_CR), cnt, rtw_read8(padapter, REG_HMETFR));
adapter_to_pwrctl(padapter)->pre_ips_type = 0;
}
else
{
pdbgpriv->dbg_carddisable_cnt++;
#ifdef DBG_CHECK_FW_PS_STATE
if(rtw_fw_ps_state(padapter) == _FAIL)
{
DBG_871X("card disable should leave 32k\n");
pdbgpriv->dbg_carddisable_error_cnt++;
}
#endif //DBG_CHECK_FW_PS_STATE
rtw_hal_power_off(padapter);
adapter_to_pwrctl(padapter)->pre_ips_type = 1;
}
}
else
#endif //CONFIG_SWLPS_IN_IPS
{
pdbgpriv->dbg_carddisable_cnt++;
#ifdef DBG_CHECK_FW_PS_STATE
if(rtw_fw_ps_state(padapter) == _FAIL)
{
DBG_871X("card disable should leave 32k\n");
pdbgpriv->dbg_carddisable_error_cnt++;
}
#endif //DBG_CHECK_FW_PS_STATE
rtw_hal_power_off(padapter);
}
}
else
{
pdbgpriv->dbg_deinit_fail_cnt++;
}
return _SUCCESS;
}
static void rtl8703bs_init_default_value(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData;
pHalData = GET_HAL_DATA(padapter);
rtl8703b_init_default_value(padapter);
// interface related variable
pHalData->SdioRxFIFOCnt = 0;
}
static void rtl8703bs_interface_configure(PADAPTER padapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(padapter);
struct registry_priv *pregistrypriv = &padapter->registrypriv;
BOOLEAN bWiFiConfig = pregistrypriv->wifi_spec;
pdvobjpriv->RtOutPipe[0] = WLAN_TX_HIQ_DEVICE_ID;
pdvobjpriv->RtOutPipe[1] = WLAN_TX_MIQ_DEVICE_ID;
pdvobjpriv->RtOutPipe[2] = WLAN_TX_LOQ_DEVICE_ID;
if (bWiFiConfig)
pHalData->OutEpNumber = 2;
else
pHalData->OutEpNumber = SDIO_MAX_TX_QUEUE;
switch(pHalData->OutEpNumber){
case 3:
pHalData->OutEpQueueSel=TX_SELE_HQ| TX_SELE_LQ|TX_SELE_NQ;
break;
case 2:
pHalData->OutEpQueueSel=TX_SELE_HQ| TX_SELE_NQ;
break;
case 1:
pHalData->OutEpQueueSel=TX_SELE_HQ;
break;
default:
break;
}
Hal_MappingOutPipe(padapter, pHalData->OutEpNumber);
}
//
// Description:
// We should set Efuse cell selection to WiFi cell in default.
//
// Assumption:
// PASSIVE_LEVEL
//
// Added by Roger, 2010.11.23.
//
static void
_EfuseCellSel(
IN PADAPTER padapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u32 value32;
//if(INCLUDE_MULTI_FUNC_BT(padapter))
{
value32 = rtw_read32(padapter, EFUSE_TEST);
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
rtw_write32(padapter, EFUSE_TEST, value32);
}
}
static VOID
_ReadRFType(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
#if DISABLE_BB_RF
pHalData->rf_chip = RF_PSEUDO_11N;
#else
pHalData->rf_chip = RF_6052;
#endif
}
static VOID
_ReadEfuseInfo8703BS(
IN PADAPTER padapter
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
u8* hwinfo = NULL;
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("====>_ReadEfuseInfo8703BS()\n"));
//
// This part read and parse the eeprom/efuse content
//
if (sizeof(pHalData->efuse_eeprom_data) < HWSET_MAX_SIZE_8703B)
DBG_871X("[WARNING] size of efuse_eeprom_data is less than HWSET_MAX_SIZE_8703B!\n");
hwinfo = pHalData->efuse_eeprom_data;
Hal_InitPGData(padapter, hwinfo);
Hal_EfuseParseIDCode(padapter, hwinfo);
Hal_EfuseParseEEPROMVer_8703B(padapter, hwinfo, pHalData->bautoload_fail_flag);
hal_config_macaddr(padapter, pHalData->bautoload_fail_flag);
Hal_EfuseParseTxPowerInfo_8703B(padapter, hwinfo, pHalData->bautoload_fail_flag);
Hal_EfuseParseBoardType_8703B(padapter, hwinfo, pHalData->bautoload_fail_flag);
//
// Read Bluetooth co-exist and initialize
//
Hal_EfuseParseBTCoexistInfo_8703B(padapter, hwinfo, pHalData->bautoload_fail_flag);
Hal_EfuseParseChnlPlan_8703B(padapter, hwinfo, pHalData->bautoload_fail_flag);
Hal_EfuseParseXtal_8703B(padapter, hwinfo, pHalData->bautoload_fail_flag);
Hal_EfuseParseThermalMeter_8703B(padapter, hwinfo, pHalData->bautoload_fail_flag);
Hal_EfuseParseAntennaDiversity_8703B(padapter, hwinfo, pHalData->bautoload_fail_flag);
Hal_EfuseParseCustomerID_8703B(padapter, hwinfo, pHalData->bautoload_fail_flag);
Hal_EfuseParseVoltage_8703B(padapter, hwinfo, pHalData->bautoload_fail_flag);
#ifdef CONFIG_WOWLAN
Hal_DetectWoWMode(padapter);
#endif
Hal_ReadRFGainOffset(padapter, hwinfo, pHalData->bautoload_fail_flag);
hal_read_mac_hidden_rpt(padapter);
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("<==== _ReadEfuseInfo8703BS()\n"));
}
static void _ReadPROMContent(
IN PADAPTER padapter
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
u8 eeValue;
eeValue = rtw_read8(padapter, REG_9346CR);
// To check system boot selection.
pHalData->EepromOrEfuse = (eeValue & BOOT_FROM_EEPROM) ? _TRUE : _FALSE;
pHalData->bautoload_fail_flag = (eeValue & EEPROM_EN) ? _FALSE : _TRUE;
RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
("%s: 9346CR=0x%02X, Boot from %s, Autoload %s\n",
__FUNCTION__, eeValue,
(pHalData->EepromOrEfuse ? "EEPROM" : "EFUSE"),
(pHalData->bautoload_fail_flag ? "Fail" : "OK")));
// pHalData->EEType = IS_BOOT_FROM_EEPROM(Adapter) ? EEPROM_93C46 : EEPROM_BOOT_EFUSE;
_ReadEfuseInfo8703BS(padapter);
}
static VOID
_InitOtherVariable(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
//if(Adapter->bInHctTest){
// pMgntInfo->PowerSaveControl.bInactivePs = FALSE;
// pMgntInfo->PowerSaveControl.bIPSModeBackup = FALSE;
// pMgntInfo->PowerSaveControl.bLeisurePs = FALSE;
// pMgntInfo->keepAliveLevel = 0;
//}
}
//
// Description:
// Read HW adapter information by E-Fuse or EEPROM according CR9346 reported.
//
// Assumption:
// PASSIVE_LEVEL (SDIO interface)
//
//
static void ReadAdapterInfo8703BS(PADAPTER padapter)
{
u8 val8;
val8 = rtw_read8(padapter, 0x4e);
MSG_8192C("%s, 0x4e=0x%x\n", __func__, val8);
val8 |= BIT(6);
rtw_write8(padapter, 0x4e, val8);
/* Read EEPROM size before call any EEPROM function */
padapter->EepromAddressSize = GetEEPROMSize8703B(padapter);
_EfuseCellSel(padapter);
_ReadRFType(padapter);
_ReadPROMContent(padapter);
_InitOtherVariable(padapter);
#ifdef CONFIG_PLATFORM_INTEL_BYT
{ //for BT, let BT can control ANT when wifi disable
u32 val32;
MSG_8192C("%s, 0x4c=0x%x\n", __func__, rtw_read32(padapter, 0x4c));
val32 = rtw_read32(padapter, 0x64);
MSG_8192C("%s, 0x64=0x%x\n", __func__, val32);
val32 |= BIT(13);
rtw_write32(padapter, 0x64, val32);
MSG_8192C("%s, 0x64=0x%x\n", __func__, rtw_read32(padapter, 0x64));
}
#endif //CONFIG_PLATFORM_INTEL_BYT
if (!rtw_is_hw_init_completed(padapter))
rtw_write8(padapter, 0x67, 0x00); // for BT, Switch Ant control to BT
}
/*
* If variable not handled here,
* some variables will be processed in SetHwReg8703B()
*/
void SetHwReg8703BS(PADAPTER padapter, u8 variable, u8 *val)
{
PHAL_DATA_TYPE pHalData;
u8 val8;
_func_enter_;
pHalData = GET_HAL_DATA(padapter);
switch (variable)
{
case HW_VAR_SET_RPWM:
// rpwm value only use BIT0(clock bit) ,BIT6(Ack bit), and BIT7(Toggle bit)
// BIT0 value - 1: 32k, 0:40MHz.
// BIT6 value - 1: report cpwm value after success set, 0:do not report.
// BIT7 value - Toggle bit change.
{
val8 = *val;
val8 &= 0xC1;
rtw_write8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HRPWM1, val8);
}
break;
case HW_VAR_SET_REQ_FW_PS:
//1. driver write 0x8f[4]=1 //request fw ps state (only can write bit4)
{
u8 req_fw_ps=0;
req_fw_ps = rtw_read8(padapter, 0x8f);
req_fw_ps |= 0x10;
rtw_write8(padapter, 0x8f, req_fw_ps);
}
break;
case HW_VAR_RXDMA_AGG_PG_TH:
val8 = *val;
// TH=1 => invalidate RX DMA aggregation
// TH=0 => validate RX DMA aggregation, use init value.
if (val8 == 0)
{
// enable RXDMA aggregation
//_RXAggrSwitch(padapter, _TRUE);
}
else
{
// disable RXDMA aggregation
//_RXAggrSwitch(padapter, _FALSE);
}
break;
case HW_VAR_DM_IN_LPS:
rtl8703b_hal_dm_in_lps(padapter);
break;
default:
SetHwReg8703B(padapter, variable, val);
break;
}
_func_exit_;
}
/*
* If variable not handled here,
* some variables will be processed in GetHwReg8703B()
*/
void GetHwReg8703BS(PADAPTER padapter, u8 variable, u8 *val)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
_func_enter_;
switch (variable)
{
case HW_VAR_CPWM:
*val = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HCPWM1_8703B);
break;
case HW_VAR_FW_PS_STATE:
{
//3. read dword 0x88 //driver read fw ps state
*((u16*)val) = rtw_read16(padapter, 0x88);
}
break;
default:
GetHwReg8703B(padapter, variable, val);
break;
}
_func_exit_;
}
//
// Description:
// Query setting of specified variable.
//
u8
GetHalDefVar8703BSDIO(
IN PADAPTER Adapter,
IN HAL_DEF_VARIABLE eVariable,
IN PVOID pValue
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 bResult = _SUCCESS;
switch(eVariable)
{
case HAL_DEF_IS_SUPPORT_ANT_DIV:
#ifdef CONFIG_ANTENNA_DIVERSITY
*((u8 *)pValue) = _FALSE;
#endif
break;
case HAL_DEF_CURRENT_ANTENNA:
#ifdef CONFIG_ANTENNA_DIVERSITY
*(( u8*)pValue) = pHalData->CurAntenna;
#endif
break;
case HW_VAR_MAX_RX_AMPDU_FACTOR:
// Stanley@BB.SD3 suggests 16K can get stable performance
// coding by Lucas@20130730
*(HT_CAP_AMPDU_FACTOR*)pValue = MAX_AMPDU_FACTOR_16K;
break;
default:
bResult = GetHalDefVar8703B(Adapter, eVariable, pValue);
break;
}
return bResult;
}
//
// Description:
// Change default setting of specified variable.
//
u8
SetHalDefVar8703BSDIO(
IN PADAPTER Adapter,
IN HAL_DEF_VARIABLE eVariable,
IN PVOID pValue
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
u8 bResult = _SUCCESS;
switch(eVariable)
{
default:
bResult = SetHalDefVar8703B(Adapter, eVariable, pValue);
break;
}
return bResult;
}
void rtl8703bs_set_hal_ops(PADAPTER padapter)
{
struct hal_ops *pHalFunc = &padapter->HalFunc;
_func_enter_;
rtl8703b_set_hal_ops(pHalFunc);
pHalFunc->hal_power_on = &_InitPowerOn_8703BS;
pHalFunc->hal_power_off = &CardDisableRTL8703BSdio;
pHalFunc->hal_init = &rtl8703bs_hal_init;
pHalFunc->hal_deinit = &rtl8703bs_hal_deinit;
pHalFunc->init_xmit_priv = &rtl8703bs_init_xmit_priv;
pHalFunc->free_xmit_priv = &rtl8703bs_free_xmit_priv;
pHalFunc->init_recv_priv = &rtl8703bs_init_recv_priv;
pHalFunc->free_recv_priv = &rtl8703bs_free_recv_priv;
pHalFunc->InitSwLeds = &rtl8703bs_InitSwLeds;
pHalFunc->DeInitSwLeds = &rtl8703bs_DeInitSwLeds;
pHalFunc->init_default_value = &rtl8703bs_init_default_value;
pHalFunc->intf_chip_configure = &rtl8703bs_interface_configure;
pHalFunc->read_adapter_info = &ReadAdapterInfo8703BS;
pHalFunc->enable_interrupt = &EnableInterrupt8703BSdio;
pHalFunc->disable_interrupt = &DisableInterrupt8703BSdio;
pHalFunc->check_ips_status = &CheckIPSStatus;
#if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
pHalFunc->clear_interrupt = &ClearInterrupt8703BSdio;
#endif
pHalFunc->SetHwRegHandler = &SetHwReg8703BS;
pHalFunc->GetHwRegHandler = &GetHwReg8703BS;
pHalFunc->GetHalDefVarHandler = &GetHalDefVar8703BSDIO;
pHalFunc->SetHalDefVarHandler = &SetHalDefVar8703BSDIO;
pHalFunc->hal_xmit = &rtl8703bs_hal_xmit;
pHalFunc->mgnt_xmit = &rtl8703bs_mgnt_xmit;
pHalFunc->hal_xmitframe_enqueue = &rtl8703bs_hal_xmitframe_enqueue;
#ifdef CONFIG_HOSTAPD_MLME
pHalFunc->hostap_mgnt_xmit_entry = NULL;
#endif
#if defined(CONFIG_CHECK_BT_HANG) && defined(CONFIG_BT_COEXIST)
pHalFunc->hal_init_checkbthang_workqueue = &rtl8703bs_init_checkbthang_workqueue;
pHalFunc->hal_free_checkbthang_workqueue = &rtl8703bs_free_checkbthang_workqueue;
pHalFunc->hal_cancle_checkbthang_workqueue = &rtl8703bs_cancle_checkbthang_workqueue;
pHalFunc->hal_checke_bt_hang = &rtl8703bs_hal_check_bt_hang;
#endif
_func_exit_;
}