rtl8723cs/hal/rtl8703b/rtl8703b_phycfg.c
2017-01-30 21:28:09 +01:00

1560 lines
46 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _RTL8703B_PHYCFG_C_
#include <rtl8703b_hal.h>
/*---------------------------Define Local Constant---------------------------*/
/* Channel switch:The size of command tables for switch channel*/
#define MAX_PRECMD_CNT 16
#define MAX_RFDEPENDCMD_CNT 16
#define MAX_POSTCMD_CNT 16
#define MAX_DOZE_WAITING_TIMES_9x 64
/*---------------------------Define Local Constant---------------------------*/
/*------------------------Define global variable-----------------------------*/
/*------------------------Define local variable------------------------------*/
/*--------------------Define export function prototype-----------------------*/
// Please refer to header file
/*--------------------Define export function prototype-----------------------*/
/*----------------------------Function Body----------------------------------*/
//
// 1. BB register R/W API
//
/**
* Function: phy_CalculateBitShift
*
* OverView: Get shifted position of the BitMask
*
* Input:
* u4Byte BitMask,
*
* Output: none
* Return: u4Byte Return the shift bit bit position of the mask
*/
static u32
phy_CalculateBitShift(
u32 BitMask
)
{
u32 i;
for(i=0; i<=31; i++)
{
if ( ((BitMask>>i) & 0x1 ) == 1)
break;
}
return (i);
}
/**
* Function: PHY_QueryBBReg
*
* OverView: Read "sepcific bits" from BB register
*
* Input:
* PADAPTER Adapter,
* u4Byte RegAddr, //The target address to be readback
* u4Byte BitMask //The target bit position in the target address
* //to be readback
* Output: None
* Return: u4Byte Data //The readback register value
* Note: This function is equal to "GetRegSetting" in PHY programming guide
*/
u32
PHY_QueryBBReg_8703B(
IN PADAPTER Adapter,
IN u32 RegAddr,
IN u32 BitMask
)
{
u32 ReturnValue = 0, OriginalValue, BitShift;
u16 BBWaitCounter = 0;
#if (DISABLE_BB_RF == 1)
return 0;
#endif
//RT_TRACE(COMP_RF, DBG_TRACE, ("--->PHY_QueryBBReg(): RegAddr(%#lx), BitMask(%#lx)\n", RegAddr, BitMask));
OriginalValue = rtw_read32(Adapter, RegAddr);
BitShift = phy_CalculateBitShift(BitMask);
ReturnValue = (OriginalValue & BitMask) >> BitShift;
return (ReturnValue);
}
/**
* Function: PHY_SetBBReg
*
* OverView: Write "Specific bits" to BB register (page 8~)
*
* Input:
* PADAPTER Adapter,
* u4Byte RegAddr, //The target address to be modified
* u4Byte BitMask //The target bit position in the target address
* //to be modified
* u4Byte Data //The new register value in the target bit position
* //of the target address
*
* Output: None
* Return: None
* Note: This function is equal to "PutRegSetting" in PHY programming guide
*/
VOID
PHY_SetBBReg_8703B(
IN PADAPTER Adapter,
IN u32 RegAddr,
IN u32 BitMask,
IN u32 Data
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
//u16 BBWaitCounter = 0;
u32 OriginalValue, BitShift;
#if (DISABLE_BB_RF == 1)
return;
#endif
//RT_TRACE(COMP_RF, DBG_TRACE, ("--->PHY_SetBBReg(): RegAddr(%#lx), BitMask(%#lx), Data(%#lx)\n", RegAddr, BitMask, Data));
if(BitMask!= bMaskDWord){//if not "double word" write
OriginalValue = rtw_read32(Adapter, RegAddr);
BitShift = phy_CalculateBitShift(BitMask);
Data = ((OriginalValue & (~BitMask)) | ((Data << BitShift) & BitMask));
}
rtw_write32(Adapter, RegAddr, Data);
}
//
// 2. RF register R/W API
//
/*-----------------------------------------------------------------------------
* Function: phy_FwRFSerialRead()
*
* Overview: We support firmware to execute RF-R/W.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 01/21/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
static u32
phy_FwRFSerialRead(
IN PADAPTER Adapter,
IN RF_PATH eRFPath,
IN u32 Offset )
{
u32 retValue = 0;
//RT_ASSERT(FALSE,("deprecate!\n"));
return (retValue);
} /* phy_FwRFSerialRead */
/*-----------------------------------------------------------------------------
* Function: phy_FwRFSerialWrite()
*
* Overview: We support firmware to execute RF-R/W.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 01/21/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
static VOID
phy_FwRFSerialWrite(
IN PADAPTER Adapter,
IN RF_PATH eRFPath,
IN u32 Offset,
IN u32 Data )
{
//RT_ASSERT(FALSE,("deprecate!\n"));
}
static u32
phy_RFSerialRead_8703B(
IN PADAPTER Adapter,
IN RF_PATH eRFPath,
IN u32 Offset
)
{
u32 retValue = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
BB_REGISTER_DEFINITION_T *pPhyReg = &pHalData->PHYRegDef[eRFPath];
u32 NewOffset;
u32 tmplong,tmplong2;
u8 RfPiEnable=0;
u4Byte MaskforPhySet=0;
int i = 0;
_enter_critical_mutex(&(adapter_to_dvobj(Adapter)->rf_read_reg_mutex) , NULL);
//
// Make sure RF register offset is correct
//
Offset &= 0xff;
NewOffset = Offset;
if(eRFPath == RF_PATH_A)
{
tmplong2 = PHY_QueryBBReg(Adapter, rFPGA0_XA_HSSIParameter2|MaskforPhySet, bMaskDWord);;
tmplong2 = (tmplong2 & (~bLSSIReadAddress)) | (NewOffset<<23) | bLSSIReadEdge; //T65 RF
PHY_SetBBReg(Adapter, rFPGA0_XA_HSSIParameter2|MaskforPhySet, bMaskDWord, tmplong2&(~bLSSIReadEdge));
}
else
{
tmplong2 = PHY_QueryBBReg(Adapter, rFPGA0_XB_HSSIParameter2|MaskforPhySet, bMaskDWord);
tmplong2 = (tmplong2 & (~bLSSIReadAddress)) | (NewOffset<<23) | bLSSIReadEdge; //T65 RF
PHY_SetBBReg(Adapter, rFPGA0_XB_HSSIParameter2|MaskforPhySet, bMaskDWord, tmplong2&(~bLSSIReadEdge));
}
tmplong2 = PHY_QueryBBReg(Adapter, rFPGA0_XA_HSSIParameter2|MaskforPhySet, bMaskDWord);
PHY_SetBBReg(Adapter, rFPGA0_XA_HSSIParameter2|MaskforPhySet, bMaskDWord, tmplong2 & (~bLSSIReadEdge));
PHY_SetBBReg(Adapter, rFPGA0_XA_HSSIParameter2|MaskforPhySet, bMaskDWord, tmplong2 | bLSSIReadEdge);
rtw_udelay_os(10);
for(i=0;i<2;i++)
rtw_udelay_os(MAX_STALL_TIME);
rtw_udelay_os(10);
if(eRFPath == RF_PATH_A)
RfPiEnable = (u1Byte)PHY_QueryBBReg(Adapter, rFPGA0_XA_HSSIParameter1|MaskforPhySet, BIT8);
else if(eRFPath == RF_PATH_B)
RfPiEnable = (u1Byte)PHY_QueryBBReg(Adapter, rFPGA0_XB_HSSIParameter1|MaskforPhySet, BIT8);
if(RfPiEnable)
{ // Read from BBreg8b8, 12 bits for 8190, 20bits for T65 RF
retValue = PHY_QueryBBReg(Adapter, pPhyReg->rfLSSIReadBackPi|MaskforPhySet, bLSSIReadBackData);
//RT_DISP(FINIT, INIT_RF, ("Readback from RF-PI : 0x%x\n", retValue));
}
else
{ //Read from BBreg8a0, 12 bits for 8190, 20 bits for T65 RF
retValue = PHY_QueryBBReg(Adapter, pPhyReg->rfLSSIReadBack|MaskforPhySet, bLSSIReadBackData);
//RT_DISP(FINIT, INIT_RF,("Readback from RF-SI : 0x%x\n", retValue));
}
_exit_critical_mutex(&(adapter_to_dvobj(Adapter)->rf_read_reg_mutex) , NULL);
return retValue;
}
/**
* Function: phy_RFSerialWrite_8703B
*
* OverView: Write data to RF register (page 8~)
*
* Input:
* PADAPTER Adapter,
* RF_PATH eRFPath, //Radio path of A/B/C/D
* u4Byte Offset, //The target address to be read
* u4Byte Data //The new register Data in the target bit position
* //of the target to be read
*
* Output: None
* Return: None
* Note: Threre are three types of serial operations:
* 1. Software serial write
* 2. Hardware LSSI-Low Speed Serial Interface
* 3. Hardware HSSI-High speed
* serial write. Driver need to implement (1) and (2).
* This function is equal to the combination of RF_ReadReg() and RFLSSIRead()
*
* Note: For RF8256 only
* The total count of RTL8256(Zebra4) register is around 36 bit it only employs
* 4-bit RF address. RTL8256 uses "register mode control bit" (Reg00[12], Reg00[10])
* to access register address bigger than 0xf. See "Appendix-4 in PHY Configuration
* programming guide" for more details.
* Thus, we define a sub-finction for RTL8526 register address conversion
* ===========================================================
* Register Mode RegCTL[1] RegCTL[0] Note
* (Reg00[12]) (Reg00[10])
* ===========================================================
* Reg_Mode0 0 x Reg 0 ~15(0x0 ~ 0xf)
* ------------------------------------------------------------------
* Reg_Mode1 1 0 Reg 16 ~30(0x1 ~ 0xf)
* ------------------------------------------------------------------
* Reg_Mode2 1 1 Reg 31 ~ 45(0x1 ~ 0xf)
* ------------------------------------------------------------------
*
* 2008/09/02 MH Add 92S RF definition
*
*
*
*/
static VOID
phy_RFSerialWrite_8703B(
IN PADAPTER Adapter,
IN RF_PATH eRFPath,
IN u32 Offset,
IN u32 Data
)
{
u32 DataAndAddr = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
BB_REGISTER_DEFINITION_T *pPhyReg = &pHalData->PHYRegDef[eRFPath];
u32 NewOffset;
Offset &= 0xff;
//
// Shadow Update
//
//PHY_RFShadowWrite(Adapter, eRFPath, Offset, Data);
//
// Switch page for 8256 RF IC
//
NewOffset = Offset;
//
// Put write addr in [5:0] and write data in [31:16]
//
//DataAndAddr = (Data<<16) | (NewOffset&0x3f);
DataAndAddr = ((NewOffset<<20) | (Data&0x000fffff)) & 0x0fffffff; // T65 RF
//
// Write Operation
//
PHY_SetBBReg(Adapter, pPhyReg->rf3wireOffset, bMaskDWord, DataAndAddr);
//RTPRINT(FPHY, PHY_RFW, ("RFW-%d Addr[0x%lx]=0x%lx\n", eRFPath, pPhyReg->rf3wireOffset, DataAndAddr));
}
/**
* Function: PHY_QueryRFReg
*
* OverView: Query "Specific bits" to RF register (page 8~)
*
* Input:
* PADAPTER Adapter,
* RF_PATH eRFPath, //Radio path of A/B/C/D
* u4Byte RegAddr, //The target address to be read
* u4Byte BitMask //The target bit position in the target address
* //to be read
*
* Output: None
* Return: u4Byte Readback value
* Note: This function is equal to "GetRFRegSetting" in PHY programming guide
*/
u32
PHY_QueryRFReg_8703B(
IN PADAPTER Adapter,
IN u8 eRFPath,
IN u32 RegAddr,
IN u32 BitMask
)
{
u32 Original_Value, Readback_Value, BitShift;
#if (DISABLE_BB_RF == 1)
return 0;
#endif
Original_Value = phy_RFSerialRead_8703B(Adapter, eRFPath, RegAddr);
BitShift = phy_CalculateBitShift(BitMask);
Readback_Value = (Original_Value & BitMask) >> BitShift;
return (Readback_Value);
}
/**
* Function: PHY_SetRFReg
*
* OverView: Write "Specific bits" to RF register (page 8~)
*
* Input:
* PADAPTER Adapter,
* RF_PATH eRFPath, //Radio path of A/B/C/D
* u4Byte RegAddr, //The target address to be modified
* u4Byte BitMask //The target bit position in the target address
* //to be modified
* u4Byte Data //The new register Data in the target bit position
* //of the target address
*
* Output: None
* Return: None
* Note: This function is equal to "PutRFRegSetting" in PHY programming guide
*/
VOID
PHY_SetRFReg_8703B(
IN PADAPTER Adapter,
IN u8 eRFPath,
IN u32 RegAddr,
IN u32 BitMask,
IN u32 Data
)
{
u32 Original_Value, BitShift;
#if (DISABLE_BB_RF == 1)
return;
#endif
// RF data is 12 bits only
if (BitMask != bRFRegOffsetMask)
{
Original_Value = phy_RFSerialRead_8703B(Adapter, eRFPath, RegAddr);
BitShift = phy_CalculateBitShift(BitMask);
Data = ((Original_Value & (~BitMask)) | (Data<< BitShift));
}
phy_RFSerialWrite_8703B(Adapter, eRFPath, RegAddr, Data);
}
//
// 3. Initial MAC/BB/RF config by reading MAC/BB/RF txt.
//
/*-----------------------------------------------------------------------------
* Function: PHY_MACConfig8192C
*
* Overview: Condig MAC by header file or parameter file.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 08/12/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
s32 PHY_MACConfig8703B(PADAPTER Adapter)
{
int rtStatus = _SUCCESS;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
s8 *pszMACRegFile;
s8 sz8703MACRegFile[] = RTL8703B_PHY_MACREG;
pszMACRegFile = sz8703MACRegFile;
//
// Config MAC
//
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
rtStatus = phy_ConfigMACWithParaFile(Adapter, pszMACRegFile);
if (rtStatus == _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
ODM_ConfigMACWithHeaderFile(&pHalData->odmpriv);
rtStatus = _SUCCESS;
#endif//CONFIG_EMBEDDED_FWIMG
}
return rtStatus;
}
/**
* Function: phy_InitBBRFRegisterDefinition
*
* OverView: Initialize Register definition offset for Radio Path A/B/C/D
*
* Input:
* PADAPTER Adapter,
*
* Output: None
* Return: None
* Note: The initialization value is constant and it should never be changes
*/
static VOID
phy_InitBBRFRegisterDefinition(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
// RF Interface Sowrtware Control
pHalData->PHYRegDef[ODM_RF_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW; // 16 LSBs if read 32-bit from 0x870
pHalData->PHYRegDef[ODM_RF_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW; // 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872)
// RF Interface Output (and Enable)
pHalData->PHYRegDef[ODM_RF_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE; // 16 LSBs if read 32-bit from 0x860
pHalData->PHYRegDef[ODM_RF_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE; // 16 LSBs if read 32-bit from 0x864
// RF Interface (Output and) Enable
pHalData->PHYRegDef[ODM_RF_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE; // 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862)
pHalData->PHYRegDef[ODM_RF_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE; // 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866)
pHalData->PHYRegDef[ODM_RF_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter; //LSSI Parameter
pHalData->PHYRegDef[ODM_RF_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter;
pHalData->PHYRegDef[ODM_RF_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2; //wire control parameter2
pHalData->PHYRegDef[ODM_RF_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2; //wire control parameter2
// Tranceiver Readback LSSI/HSPI mode
pHalData->PHYRegDef[ODM_RF_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack;
pHalData->PHYRegDef[ODM_RF_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack;
pHalData->PHYRegDef[ODM_RF_PATH_A].rfLSSIReadBackPi = TransceiverA_HSPI_Readback;
pHalData->PHYRegDef[ODM_RF_PATH_B].rfLSSIReadBackPi = TransceiverB_HSPI_Readback;
}
#if (MP_DRIVER == 1)
/*-----------------------------------------------------------------------------
* Function: phy_ConfigBBWithMpHeaderFile
*
* Overview: Config PHY_REG_MP array
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 02/04/2010 chiyokolin Modify to new files.
*---------------------------------------------------------------------------*/
static int
phy_ConfigBBWithMpHeaderFile(
IN PADAPTER Adapter,
IN u1Byte ConfigType)
{
int i;
u32* Rtl8703BPHY_REGArray_Table_MP;
u16 PHY_REGArrayMPLen;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
#if 0
PHY_REGArrayMPLen = Rtl8703B_PHY_REG_Array_MPLength;
Rtl8703BPHY_REGArray_Table_MP = (u32*)Rtl8703B_PHY_REG_Array_MP;
if(ConfigType == BaseBand_Config_PHY_REG)
{
for(i=0;i<PHY_REGArrayMPLen;i=i+2)
{
if (Rtl8703BPHY_REGArray_Table_MP[i] == 0xfe) {
#ifdef CONFIG_LONG_DELAY_ISSUE
rtw_msleep_os(50);
#else
rtw_mdelay_os(50);
#endif
}
else if (Rtl8703BPHY_REGArray_Table_MP[i] == 0xfd)
rtw_mdelay_os(5);
else if (Rtl8703BPHY_REGArray_Table_MP[i] == 0xfc)
rtw_mdelay_os(1);
else if (Rtl8703BPHY_REGArray_Table_MP[i] == 0xfb) {
#ifdef CONFIG_LONG_DELAY_ISSUE
rtw_msleep_os(50);
#else
rtw_mdelay_os(50);
#endif
}
else if (Rtl8703BPHY_REGArray_Table_MP[i] == 0xfa)
rtw_mdelay_os(5);
else if (Rtl8703BPHY_REGArray_Table_MP[i] == 0xf9)
rtw_mdelay_os(1);
PHY_SetBBReg(Adapter, Rtl8703BPHY_REGArray_Table_MP[i], bMaskDWord, Rtl8703BPHY_REGArray_Table_MP[i+1]);
// Add 1us delay between BB/RF register setting.
rtw_mdelay_os(1);
// RT_TRACE(COMP_INIT, DBG_TRACE, ("The Rtl8192CPHY_REGArray_Table_MP[%d] is %lx Rtl8192CPHY_REGArray_Table_MP[%d] is %lx \n", i, i+1, Rtl8192CPHY_REGArray_Table_MP[i], Rtl8192CPHY_REGArray_Table_MP[i+1]));
}
}
else
{
// RT_TRACE(COMP_SEND, DBG_LOUD, ("phy_ConfigBBWithMpHeaderFile(): ConfigType != BaseBand_Config_PHY_REG\n"));
}
#endif
return _SUCCESS;
} /* phy_ConfigBBWithMpHeaderFile */
#endif // #if (MP_DRIVER == 1)
static int
phy_BB8703b_Config_ParaFile(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _SUCCESS;
u8 sz8703BBRegFile[] = RTL8703B_PHY_REG;
u8 sz8703AGCTableFile[] = RTL8703B_AGC_TAB;
u8 sz8703BBRegMpFile[] = RTL8703B_PHY_REG_MP;
u8 *pszBBRegFile = NULL, *pszAGCTableFile = NULL, *pszBBRegMpFile = NULL;
pszBBRegFile = sz8703BBRegFile;
pszAGCTableFile = sz8703AGCTableFile;
pszBBRegMpFile = sz8703BBRegMpFile;
//
// 1. Read PHY_REG.TXT BB INIT!!
//
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (phy_ConfigBBWithParaFile(Adapter, pszBBRegFile, CONFIG_BB_PHY_REG) == _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
if (HAL_STATUS_SUCCESS != ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG))
rtStatus = _FAIL;
#endif
}
if(rtStatus != _SUCCESS){
DBG_8192C("%s():Write BB Reg Fail!!", __func__);
goto phy_BB8190_Config_ParaFile_Fail;
}
#if MP_DRIVER == 1
if (Adapter->registrypriv.mp_mode == 1)
{
//
// 1.1 Read PHY_REG_MP.TXT BB INIT!!
//
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (phy_ConfigBBWithMpParaFile(Adapter, pszBBRegMpFile) == _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
if (HAL_STATUS_SUCCESS != ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG_MP))
rtStatus = _FAIL;
#endif
}
if(rtStatus != _SUCCESS){
DBG_8192C("%s():Write BB Reg MP Fail!!", __func__);
goto phy_BB8190_Config_ParaFile_Fail;
}
}
#endif // #if (MP_DRIVER == 1)
//
// 2. Read BB AGC table Initialization
//
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (phy_ConfigBBWithParaFile(Adapter, pszAGCTableFile, CONFIG_BB_AGC_TAB) == _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
if (HAL_STATUS_SUCCESS != ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_AGC_TAB))
rtStatus = _FAIL;
#endif
}
if(rtStatus != _SUCCESS){
DBG_8192C("%s():AGC Table Fail\n", __func__);
goto phy_BB8190_Config_ParaFile_Fail;
}
phy_BB8190_Config_ParaFile_Fail:
return rtStatus;
}
int
PHY_BBConfig8703B(
IN PADAPTER Adapter
)
{
int rtStatus = _SUCCESS;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u32 RegVal;
u8 TmpU1B=0;
u8 value8;
phy_InitBBRFRegisterDefinition(Adapter);
// Enable BB and RF
RegVal = rtw_read16(Adapter, REG_SYS_FUNC_EN);
rtw_write16(Adapter, REG_SYS_FUNC_EN, (u16)(RegVal|BIT13|BIT0|BIT1));
rtw_write8(Adapter, REG_RF_CTRL, RF_EN|RF_RSTB|RF_SDMRSTB);
rtw_usleep_os(10);
PHY_SetRFReg(Adapter, ODM_RF_PATH_A, 0x1, 0xfffff,0x780);
#if 0
// 20090923 Joseph: Advised by Steven and Jenyu. Power sequence before init RF.
rtw_write8(Adapter, REG_AFE_PLL_CTRL, 0x83);
rtw_write8(Adapter, REG_AFE_PLL_CTRL+1, 0xdb);
#endif
rtw_write8(Adapter, REG_SYS_FUNC_EN, FEN_PPLL|FEN_PCIEA|FEN_DIO_PCIE|FEN_BB_GLB_RSTn|FEN_BBRSTB);
rtw_write8(Adapter, REG_AFE_XTAL_CTRL+1, 0x80);
//
// Config BB and AGC
//
rtStatus = phy_BB8703b_Config_ParaFile(Adapter);
hal_set_crystal_cap(Adapter, pHalData->CrystalCap);
return rtStatus;
}
void phy_LCK_8703B(
IN PADAPTER Adapter
)
{
PHY_SetRFReg(Adapter, RF_PATH_A, 0xB0, bRFRegOffsetMask, 0xDFBE0);
PHY_SetRFReg(Adapter, RF_PATH_A, RF_CHNLBW, bRFRegOffsetMask, 0x8C01);
rtw_mdelay_os(200);
PHY_SetRFReg(Adapter, RF_PATH_A, 0xB0, bRFRegOffsetMask, 0xDFFE0);
}
#if 0
// Block & Path enable
#define rOFDMCCKEN_Jaguar 0x808 // OFDM/CCK block enable
#define bOFDMEN_Jaguar 0x20000000
#define bCCKEN_Jaguar 0x10000000
#define rRxPath_Jaguar 0x808 // Rx antenna
#define bRxPath_Jaguar 0xff
#define rTxPath_Jaguar 0x80c // Tx antenna
#define bTxPath_Jaguar 0x0fffffff
#define rCCK_RX_Jaguar 0xa04 // for cck rx path selection
#define bCCK_RX_Jaguar 0x0c000000
#define rVhtlen_Use_Lsig_Jaguar 0x8c3 // Use LSIG for VHT length
VOID
PHY_BB8703B_Config_1T(
IN PADAPTER Adapter
)
{
// BB OFDM RX Path_A
PHY_SetBBReg(Adapter, rRxPath_Jaguar, bRxPath_Jaguar, 0x11);
// BB OFDM TX Path_A
PHY_SetBBReg(Adapter, rTxPath_Jaguar, bMaskLWord, 0x1111);
// BB CCK R/Rx Path_A
PHY_SetBBReg(Adapter, rCCK_RX_Jaguar, bCCK_RX_Jaguar, 0x0);
// MCS support
PHY_SetBBReg(Adapter, 0x8bc, 0xc0000060, 0x4);
// RF Path_B HSSI OFF
PHY_SetBBReg(Adapter, 0xe00, 0xf, 0x4);
// RF Path_B Power Down
PHY_SetBBReg(Adapter, 0xe90, bMaskDWord, 0);
// ADDA Path_B OFF
PHY_SetBBReg(Adapter, 0xe60, bMaskDWord, 0);
PHY_SetBBReg(Adapter, 0xe64, bMaskDWord, 0);
}
#endif
int
PHY_RFConfig8703B(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _SUCCESS;
//
// RF config
//
rtStatus = PHY_RF6052_Config8703B(Adapter);
phy_LCK_8703B(Adapter);
//PHY_BB8703B_Config_1T(Adapter);
return rtStatus;
}
/*-----------------------------------------------------------------------------
* Function: PHY_ConfigRFWithParaFile()
*
* Overview: This function read RF parameters from general file format, and do RF 3-wire
*
* Input: PADAPTER Adapter
* ps1Byte pFileName
* RF_PATH eRFPath
*
* Output: NONE
*
* Return: RT_STATUS_SUCCESS: configuration file exist
*
* Note: Delay may be required for RF configuration
*---------------------------------------------------------------------------*/
int
PHY_ConfigRFWithParaFile_8703B(
IN PADAPTER Adapter,
IN u8* pFileName,
RF_PATH eRFPath
)
{
return _SUCCESS;
}
//****************************************
/*-----------------------------------------------------------------------------
* Function: PHY_ConfigRFWithHeaderFile()
*
* Overview: This function read RF parameters from general file format, and do RF 3-wire
*
* Input: PADAPTER Adapter
* ps1Byte pFileName
* RF_PATH eRFPath
*
* Output: NONE
*
* Return: RT_STATUS_SUCCESS: configuration file exist
*
* Note: Delay may be required for RF configuration
*---------------------------------------------------------------------------*/
void phy_PowerIndexCheck8703B(
IN PADAPTER Adapter,
IN u8 channel,
IN OUT u8 *cckPowerLevel,
IN OUT u8 *ofdmPowerLevel,
IN OUT u8 *BW20PowerLevel,
IN OUT u8 *BW40PowerLevel
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
pHalData->CurrentCckTxPwrIdx = cckPowerLevel[0];
pHalData->CurrentOfdm24GTxPwrIdx = ofdmPowerLevel[0];
pHalData->CurrentBW2024GTxPwrIdx = BW20PowerLevel[0];
pHalData->CurrentBW4024GTxPwrIdx = BW40PowerLevel[0];
RT_TRACE(_module_hal_init_c_, _drv_info_,
("PHY_SetTxPowerLevel8703B(): CurrentCckTxPwrIdx : 0x%x,CurrentOfdm24GTxPwrIdx: 0x%x\n",
pHalData->CurrentCckTxPwrIdx, pHalData->CurrentOfdm24GTxPwrIdx));
}
/**************************************************************************************************************
* Description:
* The low-level interface to set TxAGC , called by both MP and Normal Driver.
*
* <20120830, Kordan>
**************************************************************************************************************/
VOID
PHY_SetTxPowerIndex_8703B(
IN PADAPTER Adapter,
IN u32 PowerIndex,
IN u8 RFPath,
IN u8 Rate
)
{
if (RFPath == ODM_RF_PATH_A || RFPath == ODM_RF_PATH_B)
{
switch (Rate)
{
case MGN_1M: PHY_SetBBReg(Adapter, rTxAGC_A_CCK1_Mcs32, bMaskByte1, PowerIndex); break;
case MGN_2M: PHY_SetBBReg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte1, PowerIndex); break;
case MGN_5_5M: PHY_SetBBReg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte2, PowerIndex); break;
case MGN_11M: PHY_SetBBReg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte3, PowerIndex); break;
case MGN_6M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate18_06, bMaskByte0, PowerIndex); break;
case MGN_9M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate18_06, bMaskByte1, PowerIndex); break;
case MGN_12M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate18_06, bMaskByte2, PowerIndex); break;
case MGN_18M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate18_06, bMaskByte3, PowerIndex); break;
case MGN_24M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate54_24, bMaskByte0, PowerIndex); break;
case MGN_36M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate54_24, bMaskByte1, PowerIndex); break;
case MGN_48M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate54_24, bMaskByte2, PowerIndex); break;
case MGN_54M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate54_24, bMaskByte3, PowerIndex); break;
case MGN_MCS0: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte0, PowerIndex); break;
case MGN_MCS1: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte1, PowerIndex); break;
case MGN_MCS2: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte2, PowerIndex); break;
case MGN_MCS3: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte3, PowerIndex); break;
case MGN_MCS4: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte0, PowerIndex); break;
case MGN_MCS5: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte1, PowerIndex); break;
case MGN_MCS6: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte2, PowerIndex); break;
case MGN_MCS7: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte3, PowerIndex); break;
default:
DBG_871X("Invalid Rate!!\n");
break;
}
}
else
{
RT_TRACE(_module_hal_init_c_, _drv_err_,("Invalid RFPath!!\n"));
}
}
u8
phy_GetCurrentTxNum_8703B(
IN PADAPTER pAdapter
)
{
return RF_TX_NUM_NONIMPLEMENT;
}
u8
PHY_GetTxPowerIndex_8703B(
IN PADAPTER pAdapter,
IN u8 RFPath,
IN u8 Rate,
IN CHANNEL_WIDTH BandWidth,
IN u8 Channel
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
s8 txPower = 0, powerDiffByRate = 0, limit = 0;
BOOLEAN bIn24G = _FALSE;
//DBG_871X("===>%s\n", __FUNCTION__ );
txPower = (s8) PHY_GetTxPowerIndexBase( pAdapter,RFPath, Rate, BandWidth, Channel, &bIn24G );
powerDiffByRate = PHY_GetTxPowerByRate( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, RF_1TX, Rate );
limit = PHY_GetTxPowerLimit( pAdapter, pAdapter->registrypriv.RegPwrTblSel, (u8)(!bIn24G), pHalData->CurrentChannelBW, RFPath, Rate, pHalData->CurrentChannel);
powerDiffByRate = powerDiffByRate > limit ? limit : powerDiffByRate;
txPower += powerDiffByRate;
txPower += PHY_GetTxPowerTrackingOffset( pAdapter, RFPath, Rate );
if(txPower > MAX_POWER_INDEX)
txPower = MAX_POWER_INDEX;
//DBG_871X("Final Tx Power(RF-%c, Channel: %d) = %d(0x%X)\n", ((RFPath==0)?'A':'B'), Channel, txPower, txPower));
return (u8) txPower;
}
VOID
PHY_SetTxPowerLevel8703B(
IN PADAPTER Adapter,
IN u8 Channel
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
pFAT_T pDM_FatTable = &pDM_Odm->DM_FatTable;
u8 RFPath = ODM_RF_PATH_A;
if(pHalData->AntDivCfg){// antenna diversity Enable
RFPath = ( (pDM_FatTable->RxIdleAnt == MAIN_ANT) ? ODM_RF_PATH_A : ODM_RF_PATH_B);
}
else{ // antenna diversity disable
RFPath = pHalData->ant_path;
}
RT_TRACE(_module_hal_init_c_, _drv_info_,("==>PHY_SetTxPowerLevel8703B()\n"));
PHY_SetTxPowerLevelByPath(Adapter, Channel, RFPath);
RT_TRACE(_module_hal_init_c_, _drv_info_,("<==PHY_SetTxPowerLevel8703B()\n"));
}
VOID
PHY_GetTxPowerLevel8703B(
IN PADAPTER Adapter,
OUT s32* powerlevel
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
s32 TxPwrDbm = 13;
#if 0
RT_TRACE(COMP_TXAGC, DBG_LOUD, ("PHY_GetTxPowerLevel8703B(): TxPowerLevel: %#x\n", TxPwrDbm));
if ( pMgntInfo->ClientConfigPwrInDbm != UNSPECIFIED_PWR_DBM )
*powerlevel = pMgntInfo->ClientConfigPwrInDbm;
else
*powerlevel = TxPwrDbm;
#endif
}
// <20130321, VincentLan> A workaround to eliminate the 2440MHz & 2480MHz spur of 8703B. (Asked by Rock.)
VOID
phy_SpurCalibration_8703B(
IN PADAPTER pAdapter,
IN u1Byte ToChannel,
IN u1Byte threshold
)
{
u4Byte freq[6] = {0xFCCD, 0xFC4D, 0xFFCD, 0xFF4D, 0xFCCD, 0xFF9A}; // {chnl 5, 6, 7, 8, 13, 14}
u1Byte idx = 0;
u1Byte b_doNotch = FALSE;
u1Byte initial_gain;
BOOLEAN bHW_Ctrl = FALSE, bSW_Ctrl = FALSE,bHW_Ctrl_S1 = FALSE, bSW_Ctrl_S1 = FALSE;
u4Byte reg948;
// add for notch
u4Byte wlan_channel, CurrentChannel, Is40MHz;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
//PMGNT_INFO pMgntInfo = &(pAdapter->MgntInfo);
PDM_ODM_T pDM_Odm = &(pHalData->odmpriv);
//PDM_ODM_T pDM_Odm = &pHalData->DM_OutSrc;
// check threshold
if(threshold <= 0x0)
threshold = 0x16;
DBG_8192C("===>phy_SpurCalibration_8703B: Channel = %d\n", ToChannel);
if (ToChannel == 5)
idx = 0;
else if (ToChannel == 6)
idx = 1;
else if (ToChannel == 7)
idx = 2;
else if (ToChannel == 8)
idx = 3;
else if (ToChannel == 13)
idx = 4;
else if (ToChannel == 14)
idx = 5;
else
idx = 10;
reg948 = PHY_QueryBBReg(pAdapter, rS0S1_PathSwitch, bMaskDWord);
if((reg948 & BIT6) == 0x0)
bSW_Ctrl = TRUE;
else
bHW_Ctrl = TRUE;
if(bHW_Ctrl)
bHW_Ctrl_S1 = (PHY_QueryBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT5|BIT4|BIT3)==0x1)? TRUE:FALSE;
else if(bSW_Ctrl)
bSW_Ctrl_S1 = ((reg948 & BIT9) == 0x0)? TRUE:FALSE;
// If wlan at S1 (both HW control & SW control) and current channel=5,6,7,8,13,14
if ((bHW_Ctrl_S1 || bSW_Ctrl_S1) && (idx <= 5))
{
initial_gain = (u1Byte) (ODM_GetBBReg(pDM_Odm, rOFDM0_XAAGCCore1, bMaskByte0) & 0x7f);
ODM_Write_DIG(pDM_Odm, 0x30);
PHY_SetBBReg(pAdapter, rFPGA0_AnalogParameter4, bMaskDWord, 0xccf000c0); // disable 3-wire
PHY_SetBBReg(pAdapter, rFPGA0_PSDFunction, bMaskDWord, freq[idx]); // Setup PSD
PHY_SetBBReg(pAdapter, rFPGA0_PSDFunction, bMaskDWord, 0x400000 | freq[idx]); // Start PSD
rtw_msleep_os(30);
if(PHY_QueryBBReg(pAdapter, rFPGA0_PSDReport, bMaskDWord) >= threshold)
b_doNotch = TRUE;
PHY_SetBBReg(pAdapter, rFPGA0_PSDFunction, bMaskDWord, freq[idx]); // turn off PSD
PHY_SetBBReg(pAdapter, rFPGA0_AnalogParameter4, bMaskDWord, 0xccc000c0); // enable 3-wire
ODM_Write_DIG(pDM_Odm, initial_gain);
}
// --- Notch Filter --- Asked by Rock
if (b_doNotch)
{
CurrentChannel = ODM_GetRFReg(pDM_Odm, ODM_RF_PATH_A, RF_CHNLBW, bRFRegOffsetMask);
wlan_channel = CurrentChannel & 0x0f; //Get center frequency
switch(wlan_channel) //Set notch filter
{
case 5:
case 13:
ODM_SetBBReg(pDM_Odm, 0xC40, BIT28|BIT27|BIT26|BIT25|BIT24, 0xB);
ODM_SetBBReg(pDM_Odm, 0xC40, BIT9, 0x1); //enable notch filter
ODM_SetBBReg(pDM_Odm, 0xD40, bMaskDWord, 0x06000000);
ODM_SetBBReg(pDM_Odm, 0xD44, bMaskDWord, 0x00000000);
ODM_SetBBReg(pDM_Odm, 0xD48, bMaskDWord, 0x00000000);
ODM_SetBBReg(pDM_Odm, 0xD4C, bMaskDWord, 0x00000000);
ODM_SetBBReg(pDM_Odm, 0xD2C, BIT28, 0x1); //enable CSI mask
break;
case 6:
ODM_SetBBReg(pDM_Odm, 0xC40, BIT28|BIT27|BIT26|BIT25|BIT24, 0x4);
ODM_SetBBReg(pDM_Odm, 0xC40, BIT9, 0x1); //enable notch filter
ODM_SetBBReg(pDM_Odm, 0xD40, bMaskDWord, 0x00000600);
ODM_SetBBReg(pDM_Odm, 0xD44, bMaskDWord, 0x00000000);
ODM_SetBBReg(pDM_Odm, 0xD48, bMaskDWord, 0x00000000);
ODM_SetBBReg(pDM_Odm, 0xD4C, bMaskDWord, 0x00000000);
ODM_SetBBReg(pDM_Odm, 0xD2C, BIT28, 0x1); //enable CSI mask
break;
case 7:
ODM_SetBBReg(pDM_Odm, 0xC40, BIT28|BIT27|BIT26|BIT25|BIT24, 0x3);
ODM_SetBBReg(pDM_Odm, 0xC40, BIT9, 0x1); //enable notch filter
ODM_SetBBReg(pDM_Odm, 0xD40, bMaskDWord, 0x00000000);
ODM_SetBBReg(pDM_Odm, 0xD44, bMaskDWord, 0x00000000);
ODM_SetBBReg(pDM_Odm, 0xD48, bMaskDWord, 0x00000000);
ODM_SetBBReg(pDM_Odm, 0xD4C, bMaskDWord, 0x06000000);
ODM_SetBBReg(pDM_Odm, 0xD2C, BIT28, 0x1); //enable CSI mask
break;
case 8:
ODM_SetBBReg(pDM_Odm, 0xC40, BIT28|BIT27|BIT26|BIT25|BIT24, 0xA);
ODM_SetBBReg(pDM_Odm, 0xC40, BIT9, 0x1); //enable notch filter
ODM_SetBBReg(pDM_Odm, 0xD40, bMaskDWord, 0x00000000);
ODM_SetBBReg(pDM_Odm, 0xD44, bMaskDWord, 0x00000000);
ODM_SetBBReg(pDM_Odm, 0xD48, bMaskDWord, 0x00000000);
ODM_SetBBReg(pDM_Odm, 0xD4C, bMaskDWord, 0x00000380);
ODM_SetBBReg(pDM_Odm, 0xD2C, BIT28, 0x1); //enable CSI mask
break;
case 14:
ODM_SetBBReg(pDM_Odm, 0xC40, BIT28|BIT27|BIT26|BIT25|BIT24, 0x5);
ODM_SetBBReg(pDM_Odm, 0xC40, BIT9, 0x1); //enable notch filter
ODM_SetBBReg(pDM_Odm, 0xD40, bMaskDWord, 0x00000000);
ODM_SetBBReg(pDM_Odm, 0xD44, bMaskDWord, 0x00000000);
ODM_SetBBReg(pDM_Odm, 0xD48, bMaskDWord, 0x00000000);
ODM_SetBBReg(pDM_Odm, 0xD4C, bMaskDWord, 0x00180000);
ODM_SetBBReg(pDM_Odm, 0xD2C, BIT28, 0x1); //enable CSI mask
break;
default:
ODM_SetBBReg(pDM_Odm, 0xC40, BIT9, 0x0); //disable notch filter
ODM_SetBBReg(pDM_Odm, 0xD2C, BIT28, 0x0); //disable CSI mask function
break;
}//switch(wlan_channel)
return;
}
ODM_SetBBReg(pDM_Odm, 0xC40, BIT9, 0x0); //disable notch filter
ODM_SetBBReg(pDM_Odm, 0xD2C, BIT28, 0x0); //disable CSI mask
}
VOID
phy_SetRegBW_8703B(
IN PADAPTER Adapter,
CHANNEL_WIDTH CurrentBW
)
{
u16 RegRfMod_BW, u2tmp = 0;
RegRfMod_BW = rtw_read16(Adapter, REG_TRXPTCL_CTL_8703B);
switch(CurrentBW)
{
case CHANNEL_WIDTH_20:
rtw_write16(Adapter, REG_TRXPTCL_CTL_8703B, (RegRfMod_BW & 0xFE7F)); // BIT 7 = 0, BIT 8 = 0
break;
case CHANNEL_WIDTH_40:
u2tmp = RegRfMod_BW | BIT7;
rtw_write16(Adapter, REG_TRXPTCL_CTL_8703B, (u2tmp & 0xFEFF)); // BIT 7 = 1, BIT 8 = 0
break;
case CHANNEL_WIDTH_80:
u2tmp = RegRfMod_BW | BIT8;
rtw_write16(Adapter, REG_TRXPTCL_CTL_8703B, (u2tmp & 0xFF7F)); // BIT 7 = 0, BIT 8 = 1
break;
default:
DBG_871X("phy_PostSetBWMode8703B(): unknown Bandwidth: %#X\n",CurrentBW);
break;
}
}
u8
phy_GetSecondaryChnl_8703B(
IN PADAPTER Adapter
)
{
u8 SCSettingOf40 = 0, SCSettingOf20 = 0;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
RT_TRACE(_module_hal_init_c_, _drv_info_,("SCMapping: VHT Case: pHalData->CurrentChannelBW %d, pHalData->nCur80MhzPrimeSC %d, pHalData->nCur40MhzPrimeSC %d \n",pHalData->CurrentChannelBW,pHalData->nCur80MhzPrimeSC,pHalData->nCur40MhzPrimeSC));
if(pHalData->CurrentChannelBW== CHANNEL_WIDTH_80)
{
if(pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
SCSettingOf40 = VHT_DATA_SC_40_LOWER_OF_80MHZ;
else if(pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
SCSettingOf40 = VHT_DATA_SC_40_UPPER_OF_80MHZ;
else
RT_TRACE(_module_hal_init_c_, _drv_err_,("SCMapping: Not Correct Primary40MHz Setting \n"));
if((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
SCSettingOf20 = VHT_DATA_SC_20_LOWEST_OF_80MHZ;
else if((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
SCSettingOf20 = VHT_DATA_SC_20_LOWER_OF_80MHZ;
else if((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
SCSettingOf20 = VHT_DATA_SC_20_UPPER_OF_80MHZ;
else if((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
SCSettingOf20 = VHT_DATA_SC_20_UPPERST_OF_80MHZ;
else
RT_TRACE(_module_hal_init_c_, _drv_err_,("SCMapping: Not Correct Primary40MHz Setting \n"));
}
else if(pHalData->CurrentChannelBW == CHANNEL_WIDTH_40)
{
RT_TRACE(_module_hal_init_c_, _drv_info_,("SCMapping: VHT Case: pHalData->CurrentChannelBW %d, pHalData->nCur40MhzPrimeSC %d \n",pHalData->CurrentChannelBW,pHalData->nCur40MhzPrimeSC));
if(pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
SCSettingOf20 = VHT_DATA_SC_20_UPPER_OF_80MHZ;
else if(pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
SCSettingOf20 = VHT_DATA_SC_20_LOWER_OF_80MHZ;
else
RT_TRACE(_module_hal_init_c_, _drv_err_,("SCMapping: Not Correct Primary40MHz Setting \n"));
}
RT_TRACE(_module_hal_init_c_, _drv_info_,("SCMapping: SC Value %x \n", ( (SCSettingOf40 << 4) | SCSettingOf20)));
return ( (SCSettingOf40 << 4) | SCSettingOf20);
}
VOID
phy_PostSetBwMode8703B(
IN PADAPTER Adapter
)
{
u1Byte SubChnlNum = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u1Byte u1TmpVal = 0;
//3 Set Reg668 Reg440 BW
phy_SetRegBW_8703B(Adapter, pHalData->CurrentChannelBW);
//3 Set Reg483
SubChnlNum = phy_GetSecondaryChnl_8703B(Adapter);
rtw_write8(Adapter, REG_DATA_SC_8703B, SubChnlNum);
//3//
//3//<2>Set PHY related register
//3//
switch(pHalData->CurrentChannelBW)
{
/* 20 MHz channel*/
case CHANNEL_WIDTH_20:
PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x0);
PHY_SetBBReg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x0);
// PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter2, BIT10, 1);
PHY_SetBBReg(Adapter, rOFDM0_TxPseudoNoiseWgt, (BIT31|BIT30), 0x0);
/* 8703B new Add */
PHY_SetBBReg(Adapter, pHalData->RegForRecover[2].offset, bMaskDWord, pHalData->RegForRecover[2].value);
PHY_SetBBReg(Adapter, pHalData->RegForRecover[3].offset, bMaskDWord, pHalData->RegForRecover[3].value);
PHY_SetRFReg(Adapter, ODM_RF_PATH_A, pHalData->RegForRecover[4].offset, bRFRegOffsetMask, pHalData->RegForRecover[4].value);
break;
/* 40 MHz channel*/
case CHANNEL_WIDTH_40:
PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x1);
PHY_SetBBReg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x1);
/* 8703B new Add*/
PHY_SetBBReg(Adapter, rBBrx_DFIR, bMaskDWord, 0x40100000);
PHY_SetBBReg(Adapter, rOFDM0_XATxAFE, bMaskDWord, 0x51F60000);
PHY_SetRFReg(Adapter, ODM_RF_PATH_A, 0x1E, bRFRegOffsetMask, 0x00C4C);
/* Set Control channel to upper or lower. These settings are required only for 40MHz*/
PHY_SetBBReg(Adapter, rCCK0_System, bCCKSideBand, (pHalData->nCur40MhzPrimeSC>>1));
PHY_SetBBReg(Adapter, rOFDM1_LSTF, 0xC00, pHalData->nCur40MhzPrimeSC);
PHY_SetBBReg(Adapter, 0x818, (BIT26|BIT27), (pHalData->nCur40MhzPrimeSC==HAL_PRIME_CHNL_OFFSET_LOWER)?2:1);
u1TmpVal = rtw_read8(Adapter, REG_DATA_SC_8703B);
u1TmpVal &= 0xF0;
u1TmpVal |= ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1);
rtw_write8(Adapter, REG_DATA_SC_8703B, u1TmpVal);
break;
default:
/*RT_TRACE(COMP_DBG, DBG_LOUD, ("phy_SetBWMode8703B(): unknown Bandwidth: %#X\n"\
,pHalData->CurrentChannelBW));*/
break;
}
//3<3>Set RF related register
PHY_RF6052SetBandwidth8703B(Adapter, pHalData->CurrentChannelBW);
}
VOID
phy_SwChnl8703B(
IN PADAPTER pAdapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
u8 channelToSW = pHalData->CurrentChannel;
u8 i = 0;
if (pHalData->rf_chip == RF_PSEUDO_11N) {
DBG_871X("phy_SwChnl8703B: return for PSEUDO\n");
return;
}
pHalData->RfRegChnlVal[0] = ((pHalData->RfRegChnlVal[0] & 0xfffff00) | channelToSW );
PHY_SetRFReg(pAdapter, ODM_RF_PATH_A, RF_CHNLBW, 0x3FF, pHalData->RfRegChnlVal[0] );
PHY_SetRFReg(pAdapter, ODM_RF_PATH_B, RF_CHNLBW, 0x3FF, pHalData->RfRegChnlVal[0] );
/* BB Setting for some channels (requested by BB Neil) */
switch (channelToSW) {
case 14:
/*Channel 14 in CCK, need to set 0xA26~0xA29 to 0 */
PHY_SetBBReg(pAdapter, rCCK0_TxFilter2, bMaskHWord, 0);
PHY_SetBBReg(pAdapter, rCCK0_DebugPort, bMaskLWord, 0);
break;
default:
/*Normal setting for 8703B, just recover to the default setting. */
/*This hardcore values refer to the parameter which BB team gave. */
for (i = 0 ; i < 2 ; ++i)
PHY_SetBBReg(pAdapter, pHalData->RegForRecover[i].offset, bMaskDWord, pHalData->RegForRecover[i].value);
}
phy_SpurCalibration_8703B(pAdapter, channelToSW, 0x16);
DBG_8192C("===>phy_SwChnl8703B: Channel = %d\n", channelToSW);
}
VOID
phy_SwChnlAndSetBwMode8703B(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
//RT_TRACE(COMP_SCAN, DBG_LOUD, ("phy_SwChnlAndSetBwMode8703B(): bSwChnl %d, bSetChnlBW %d \n", pHalData->bSwChnl, pHalData->bSetChnlBW));
if ( Adapter->bNotifyChannelChange )
{
DBG_871X( "[%s] bSwChnl=%d, ch=%d, bSetChnlBW=%d, bw=%d\n",
__FUNCTION__,
pHalData->bSwChnl,
pHalData->CurrentChannel,
pHalData->bSetChnlBW,
pHalData->CurrentChannelBW);
}
if (RTW_CANNOT_RUN(Adapter))
return;
if(pHalData->bSwChnl)
{
phy_SwChnl8703B(Adapter);
pHalData->bSwChnl = _FALSE;
}
if(pHalData->bSetChnlBW)
{
phy_PostSetBwMode8703B(Adapter);
pHalData->bSetChnlBW = _FALSE;
}
PHY_SetTxPowerLevel8703B(Adapter, pHalData->CurrentChannel);
}
VOID
PHY_HandleSwChnlAndSetBW8703B(
IN PADAPTER Adapter,
IN BOOLEAN bSwitchChannel,
IN BOOLEAN bSetBandWidth,
IN u8 ChannelNum,
IN CHANNEL_WIDTH ChnlWidth,
IN EXTCHNL_OFFSET ExtChnlOffsetOf40MHz,
IN EXTCHNL_OFFSET ExtChnlOffsetOf80MHz,
IN u8 CenterFrequencyIndex1
)
{
//static BOOLEAN bInitialzed = _FALSE;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
u8 tmpChannel = pHalData->CurrentChannel;
CHANNEL_WIDTH tmpBW= pHalData->CurrentChannelBW;
u8 tmpnCur40MhzPrimeSC = pHalData->nCur40MhzPrimeSC;
u8 tmpnCur80MhzPrimeSC = pHalData->nCur80MhzPrimeSC;
u8 tmpCenterFrequencyIndex1 =pHalData->CurrentCenterFrequencyIndex1;
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
//DBG_871X("=> PHY_HandleSwChnlAndSetBW8812: bSwitchChannel %d, bSetBandWidth %d \n",bSwitchChannel,bSetBandWidth);
//check is swchnl or setbw
if(!bSwitchChannel && !bSetBandWidth)
{
DBG_871X("PHY_HandleSwChnlAndSetBW8812: not switch channel and not set bandwidth \n");
return;
}
//skip change for channel or bandwidth is the same
if(bSwitchChannel)
{
//if(pHalData->CurrentChannel != ChannelNum)
{
if (HAL_IsLegalChannel(Adapter, ChannelNum))
pHalData->bSwChnl = _TRUE;
}
}
if(bSetBandWidth)
{
#if 0
if(bInitialzed == _FALSE)
{
bInitialzed = _TRUE;
pHalData->bSetChnlBW = _TRUE;
}
else if((pHalData->CurrentChannelBW != ChnlWidth) ||(pHalData->nCur40MhzPrimeSC != ExtChnlOffsetOf40MHz) || (pHalData->CurrentCenterFrequencyIndex1!= CenterFrequencyIndex1))
{
pHalData->bSetChnlBW = _TRUE;
}
#else
pHalData->bSetChnlBW = _TRUE;
#endif
}
if(!pHalData->bSetChnlBW && !pHalData->bSwChnl)
{
//DBG_871X("<= PHY_HandleSwChnlAndSetBW8812: bSwChnl %d, bSetChnlBW %d \n",pHalData->bSwChnl,pHalData->bSetChnlBW);
return;
}
if(pHalData->bSwChnl)
{
pHalData->CurrentChannel=ChannelNum;
pHalData->CurrentCenterFrequencyIndex1 = ChannelNum;
}
if(pHalData->bSetChnlBW)
{
pHalData->CurrentChannelBW = ChnlWidth;
#if 0
if(ExtChnlOffsetOf40MHz==EXTCHNL_OFFSET_LOWER)
pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_UPPER;
else if(ExtChnlOffsetOf40MHz==EXTCHNL_OFFSET_UPPER)
pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_LOWER;
else
pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
if(ExtChnlOffsetOf80MHz==EXTCHNL_OFFSET_LOWER)
pHalData->nCur80MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_UPPER;
else if(ExtChnlOffsetOf80MHz==EXTCHNL_OFFSET_UPPER)
pHalData->nCur80MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_LOWER;
else
pHalData->nCur80MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
#else
pHalData->nCur40MhzPrimeSC = ExtChnlOffsetOf40MHz;
pHalData->nCur80MhzPrimeSC = ExtChnlOffsetOf80MHz;
#endif
pHalData->CurrentCenterFrequencyIndex1 = CenterFrequencyIndex1;
}
//Switch workitem or set timer to do switch channel or setbandwidth operation
if (!RTW_CANNOT_RUN(Adapter))
phy_SwChnlAndSetBwMode8703B(Adapter);
else
{
if(pHalData->bSwChnl)
{
pHalData->CurrentChannel = tmpChannel;
pHalData->CurrentCenterFrequencyIndex1 = tmpChannel;
}
if(pHalData->bSetChnlBW)
{
pHalData->CurrentChannelBW = tmpBW;
pHalData->nCur40MhzPrimeSC = tmpnCur40MhzPrimeSC;
pHalData->nCur80MhzPrimeSC = tmpnCur80MhzPrimeSC;
pHalData->CurrentCenterFrequencyIndex1 = tmpCenterFrequencyIndex1;
}
}
//DBG_871X("Channel %d ChannelBW %d ",pHalData->CurrentChannel, pHalData->CurrentChannelBW);
//DBG_871X("40MhzPrimeSC %d 80MhzPrimeSC %d ",pHalData->nCur40MhzPrimeSC, pHalData->nCur80MhzPrimeSC);
//DBG_871X("CenterFrequencyIndex1 %d \n",pHalData->CurrentCenterFrequencyIndex1);
//DBG_871X("<= PHY_HandleSwChnlAndSetBW8812: bSwChnl %d, bSetChnlBW %d \n",pHalData->bSwChnl,pHalData->bSetChnlBW);
}
VOID
PHY_SetBWMode8703B(
IN PADAPTER Adapter,
IN CHANNEL_WIDTH Bandwidth, // 20M or 40M
IN unsigned char Offset // Upper, Lower, or Don't care
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
PHY_HandleSwChnlAndSetBW8703B(Adapter, _FALSE, _TRUE, pHalData->CurrentChannel, Bandwidth, Offset, Offset, pHalData->CurrentChannel);
}
VOID
PHY_SwChnl8703B( // Call after initialization
IN PADAPTER Adapter,
IN u8 channel
)
{
PHY_HandleSwChnlAndSetBW8703B(Adapter, _TRUE, _FALSE, channel, 0, 0, 0, channel);
}
VOID
PHY_SetSwChnlBWMode8703B(
IN PADAPTER Adapter,
IN u8 channel,
IN CHANNEL_WIDTH Bandwidth,
IN u8 Offset40,
IN u8 Offset80
)
{
//DBG_871X("%s()===>\n",__FUNCTION__);
PHY_HandleSwChnlAndSetBW8703B(Adapter, _TRUE, _TRUE, channel, Bandwidth, Offset40, Offset80, channel);
//DBG_871X("<==%s()\n",__FUNCTION__);
}
static VOID
_PHY_DumpRFReg_8703B(IN PADAPTER pAdapter)
{
u32 rfRegValue,rfRegOffset;
RT_TRACE(_module_hal_init_c_, _drv_info_, ("_PHY_DumpRFReg_8703B()====>\n"));
for(rfRegOffset = 0x00;rfRegOffset<=0x30;rfRegOffset++){
rfRegValue = PHY_QueryRFReg_8703B(pAdapter,RF_PATH_A, rfRegOffset, bMaskDWord);
RT_TRACE(_module_hal_init_c_, _drv_info_, (" 0x%02x = 0x%08x\n",rfRegOffset,rfRegValue));
}
RT_TRACE(_module_hal_init_c_, _drv_info_, ("<===== _PHY_DumpRFReg_8703B()\n"));
}