rtl8723cs/hal/rtl8703b/rtl8703b_hal_init.c

7378 lines
199 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2013 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _HAL_INIT_C_
#include <rtl8703b_hal.h>
#include "hal_com_h2c.h"
#include <hal_com.h>
#define FW_DOWNLOAD_SIZE_8703B 8192
static VOID
_FWDownloadEnable(
IN PADAPTER padapter,
IN BOOLEAN enable
)
{
u8 tmp, count = 0;
if(enable)
{
// 8051 enable
tmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
rtw_write8(padapter, REG_SYS_FUNC_EN+1, tmp|0x04);
tmp = rtw_read8(padapter, REG_MCUFWDL);
rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
do{
tmp = rtw_read8(padapter, REG_MCUFWDL);
if(tmp & 0x01)
break;
rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
rtw_msleep_os(1);
}while(count++<100);
if(count > 0)
DBG_871X("%s: !!!!!!!!Write 0x80 Fail!: count = %d\n", __func__, count);
// 8051 reset
tmp = rtw_read8(padapter, REG_MCUFWDL+2);
rtw_write8(padapter, REG_MCUFWDL+2, tmp&0xf7);
}
else
{
// MCU firmware download disable.
tmp = rtw_read8(padapter, REG_MCUFWDL);
rtw_write8(padapter, REG_MCUFWDL, tmp&0xfe);
}
}
static int
_BlockWrite(
IN PADAPTER padapter,
IN PVOID buffer,
IN u32 buffSize
)
{
int ret = _SUCCESS;
u32 blockSize_p1 = 4; // (Default) Phase #1 : PCI muse use 4-byte write to download FW
u32 blockSize_p2 = 8; // Phase #2 : Use 8-byte, if Phase#1 use big size to write FW.
u32 blockSize_p3 = 1; // Phase #3 : Use 1-byte, the remnant of FW image.
u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
u32 remainSize_p1 = 0, remainSize_p2 = 0;
u8 *bufferPtr = (u8*)buffer;
u32 i=0, offset=0;
#ifdef CONFIG_PCI_HCI
u8 remainFW[4] = {0, 0, 0, 0};
u8 *p = NULL;
#endif
#ifdef CONFIG_USB_HCI
blockSize_p1 = 254;
#endif
// printk("====>%s %d\n", __func__, __LINE__);
//3 Phase #1
blockCount_p1 = buffSize / blockSize_p1;
remainSize_p1 = buffSize % blockSize_p1;
if (blockCount_p1) {
RT_TRACE(_module_hal_init_c_, _drv_notice_,
("_BlockWrite: [P1] buffSize(%d) blockSize_p1(%d) blockCount_p1(%d) remainSize_p1(%d)\n",
buffSize, blockSize_p1, blockCount_p1, remainSize_p1));
}
for (i = 0; i < blockCount_p1; i++)
{
#ifdef CONFIG_USB_HCI
ret = rtw_writeN(padapter, (FW_8703B_START_ADDRESS + i * blockSize_p1), blockSize_p1, (bufferPtr + i * blockSize_p1));
#else
ret = rtw_write32(padapter, (FW_8703B_START_ADDRESS + i * blockSize_p1), le32_to_cpu(*((u32*)(bufferPtr + i * blockSize_p1))));
#endif
if(ret == _FAIL) {
printk("====>%s %d i:%d\n", __func__, __LINE__, i);
goto exit;
}
}
#ifdef CONFIG_PCI_HCI
p = (u8*)((u32*)(bufferPtr + blockCount_p1 * blockSize_p1));
if (remainSize_p1) {
switch (remainSize_p1) {
case 0:
break;
case 3:
remainFW[2]=*(p+2);
case 2:
remainFW[1]=*(p+1);
case 1:
remainFW[0]=*(p);
ret = rtw_write32(padapter, (FW_8703B_START_ADDRESS + blockCount_p1 * blockSize_p1),
le32_to_cpu(*(u32*)remainFW));
}
return ret;
}
#endif
//3 Phase #2
if (remainSize_p1)
{
offset = blockCount_p1 * blockSize_p1;
blockCount_p2 = remainSize_p1/blockSize_p2;
remainSize_p2 = remainSize_p1%blockSize_p2;
if (blockCount_p2) {
RT_TRACE(_module_hal_init_c_, _drv_notice_,
("_BlockWrite: [P2] buffSize_p2(%d) blockSize_p2(%d) blockCount_p2(%d) remainSize_p2(%d)\n",
(buffSize-offset), blockSize_p2 ,blockCount_p2, remainSize_p2));
}
#ifdef CONFIG_USB_HCI
for (i = 0; i < blockCount_p2; i++) {
ret = rtw_writeN(padapter, (FW_8703B_START_ADDRESS + offset + i*blockSize_p2), blockSize_p2, (bufferPtr + offset + i*blockSize_p2));
if(ret == _FAIL)
goto exit;
}
#endif
}
//3 Phase #3
if (remainSize_p2)
{
offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
blockCount_p3 = remainSize_p2 / blockSize_p3;
RT_TRACE(_module_hal_init_c_, _drv_notice_,
("_BlockWrite: [P3] buffSize_p3(%d) blockSize_p3(%d) blockCount_p3(%d)\n",
(buffSize-offset), blockSize_p3, blockCount_p3));
for(i = 0 ; i < blockCount_p3 ; i++){
ret = rtw_write8(padapter, (FW_8703B_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
if(ret == _FAIL) {
printk("====>%s %d i:%d\n", __func__, __LINE__, i);
goto exit;
}
}
}
exit:
return ret;
}
static int
_PageWrite(
IN PADAPTER padapter,
IN u32 page,
IN PVOID buffer,
IN u32 size
)
{
u8 value8;
u8 u8Page = (u8) (page & 0x07) ;
value8 = (rtw_read8(padapter, REG_MCUFWDL+2) & 0xF8) | u8Page ;
rtw_write8(padapter, REG_MCUFWDL+2,value8);
return _BlockWrite(padapter,buffer,size);
}
static VOID
_FillDummy(
u8* pFwBuf,
u32* pFwLen
)
{
u32 FwLen = *pFwLen;
u8 remain = (u8)(FwLen%4);
remain = (remain==0)?0:(4-remain);
while(remain>0)
{
pFwBuf[FwLen] = 0;
FwLen++;
remain--;
}
*pFwLen = FwLen;
}
static int
_WriteFW(
IN PADAPTER padapter,
IN PVOID buffer,
IN u32 size
)
{
// Since we need dynamic decide method of dwonload fw, so we call this function to get chip version.
int ret = _SUCCESS;
u32 pageNums,remainSize ;
u32 page, offset;
u8 *bufferPtr = (u8*)buffer;
#ifdef CONFIG_PCI_HCI
// 20100120 Joseph: Add for 88CE normal chip.
// Fill in zero to make firmware image to dword alignment.
_FillDummy(bufferPtr, &size);
#endif
pageNums = size / MAX_DLFW_PAGE_SIZE ;
//RT_ASSERT((pageNums <= 4), ("Page numbers should not greater then 4 \n"));
remainSize = size % MAX_DLFW_PAGE_SIZE;
for (page = 0; page < pageNums; page++) {
offset = page * MAX_DLFW_PAGE_SIZE;
ret = _PageWrite(padapter, page, bufferPtr+offset, MAX_DLFW_PAGE_SIZE);
if(ret == _FAIL) {
printk("====>%s %d\n", __func__, __LINE__);
goto exit;
}
}
if (remainSize) {
offset = pageNums * MAX_DLFW_PAGE_SIZE;
page = pageNums;
ret = _PageWrite(padapter, page, bufferPtr+offset, remainSize);
if(ret == _FAIL) {
printk("====>%s %d\n", __func__, __LINE__);
goto exit;
}
}
RT_TRACE(_module_hal_init_c_, _drv_info_, ("_WriteFW Done- for Normal chip.\n"));
exit:
return ret;
}
void _8051Reset8703(PADAPTER padapter)
{
u8 cpu_rst;
u8 io_rst;
#if 0
io_rst = rtw_read8(padapter, REG_RSV_CTRL);
rtw_write8(padapter, REG_RSV_CTRL, io_rst&(~BIT1));
#endif
// Reset 8051(WLMCU) IO wrapper
// 0x1c[8] = 0
// Suggested by Isaac@SD1 and Gimmy@SD1, coding by Lucas@20130624
io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
io_rst &= ~BIT(0);
rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
cpu_rst &= ~BIT(2);
rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
#if 0
io_rst = rtw_read8(padapter, REG_RSV_CTRL);
rtw_write8(padapter, REG_RSV_CTRL, io_rst&(~BIT1));
#endif
// Enable 8051 IO wrapper
// 0x1c[8] = 1
io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
io_rst |= BIT(0);
rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
cpu_rst |= BIT(2);
rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
DBG_8192C("%s: Finish\n", __FUNCTION__);
}
static s32 polling_fwdl_chksum(_adapter *adapter, u32 min_cnt, u32 timeout_ms)
{
s32 ret = _FAIL;
u32 value32;
u32 start = rtw_get_current_time();
u32 cnt = 0;
/* polling CheckSum report */
do {
cnt++;
value32 = rtw_read32(adapter, REG_MCUFWDL);
if (value32 & FWDL_ChkSum_rpt || RTW_CANNOT_IO(adapter))
break;
rtw_yield_os();
} while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt);
if (!(value32 & FWDL_ChkSum_rpt)) {
goto exit;
}
if (rtw_fwdl_test_trigger_chksum_fail())
goto exit;
ret = _SUCCESS;
exit:
DBG_871X("%s: Checksum report %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __FUNCTION__
, (ret==_SUCCESS)?"OK":"Fail", cnt, rtw_get_passing_time_ms(start), value32);
return ret;
}
static s32 _FWFreeToGo(_adapter *adapter, u32 min_cnt, u32 timeout_ms)
{
s32 ret = _FAIL;
u32 value32;
u32 start = rtw_get_current_time();
u32 cnt = 0;
u32 value_to_check = 0;
u32 value_expected = (MCUFWDL_RDY | FWDL_ChkSum_rpt | WINTINI_RDY | RAM_DL_SEL);
value32 = rtw_read32(adapter, REG_MCUFWDL);
value32 |= MCUFWDL_RDY;
value32 &= ~WINTINI_RDY;
rtw_write32(adapter, REG_MCUFWDL, value32);
_8051Reset8703(adapter);
/* polling for FW ready */
do {
cnt++;
value32 = rtw_read32(adapter, REG_MCUFWDL);
value_to_check = value32 & value_expected;
if ((value_to_check == value_expected) || RTW_CANNOT_IO(adapter))
break;
rtw_yield_os();
} while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt);
if (value_to_check != value_expected) {
goto exit;
}
if (rtw_fwdl_test_trigger_wintint_rdy_fail())
goto exit;
ret = _SUCCESS;
exit:
DBG_871X("%s: Polling FW ready %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __FUNCTION__
, (ret==_SUCCESS)?"OK":"Fail", cnt, rtw_get_passing_time_ms(start), value32);
return ret;
}
#define IS_FW_81xxC(padapter) (((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0)
void rtl8703b_FirmwareSelfReset(PADAPTER padapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u8 u1bTmp;
u8 Delay = 100;
if (!(IS_FW_81xxC(padapter) &&
((pHalData->FirmwareVersion < 0x21) ||
(pHalData->FirmwareVersion == 0x21 &&
pHalData->FirmwareSubVersion < 0x01)))) // after 88C Fw v33.1
{
//0x1cf=0x20. Inform 8051 to reset. 2009.12.25. tynli_test
rtw_write8(padapter, REG_HMETFR+3, 0x20);
u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
while (u1bTmp & BIT2)
{
Delay--;
if(Delay == 0)
break;
rtw_udelay_os(50);
u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
}
RT_TRACE(_module_hal_init_c_, _drv_notice_, ("-%s: 8051 reset success (%d)\n", __FUNCTION__, Delay));
if (Delay == 0)
{
RT_TRACE(_module_hal_init_c_, _drv_notice_, ("%s: Force 8051 reset!!!\n", __FUNCTION__));
//force firmware reset
u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2));
}
}
}
#ifdef CONFIG_FILE_FWIMG
extern char *rtw_fw_file_path;
extern char *rtw_fw_wow_file_path;
#ifdef CONFIG_MP_INCLUDED
extern char *rtw_fw_mp_bt_file_path;
#endif // CONFIG_MP_INCLUDED
u8 FwBuffer[FW_8703B_SIZE];
#endif // CONFIG_FILE_FWIMG
#ifdef CONFIG_MP_INCLUDED
int _WriteBTFWtoTxPktBuf8703B(
IN PADAPTER Adapter,
IN PVOID buffer,
IN u4Byte FwBufLen,
IN u1Byte times
)
{
int rtStatus = _SUCCESS;
//u4Byte value32;
//u1Byte numHQ, numLQ, numPubQ;//, txpktbuf_bndy;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
//PMGNT_INFO pMgntInfo = &(Adapter->MgntInfo);
u1Byte BcnValidReg;
u1Byte count=0, DLBcnCount=0;
pu1Byte FwbufferPtr = (pu1Byte)buffer;
//PRT_TCB pTcb, ptempTcb;
//PRT_TX_LOCAL_BUFFER pBuf;
BOOLEAN bRecover=_FALSE;
pu1Byte ReservedPagePacket = NULL;
pu1Byte pGenBufReservedPagePacket = NULL;
u4Byte TotalPktLen,txpktbuf_bndy;
//u1Byte tmpReg422;
//u1Byte u1bTmp;
u8 *pframe;
struct xmit_priv *pxmitpriv = &(Adapter->xmitpriv);
struct xmit_frame *pmgntframe;
struct pkt_attrib *pattrib;
u8 txdesc_offset = TXDESC_OFFSET;
u8 val8;
#if (DEV_BUS_TYPE == RT_PCI_INTERFACE)
u8 u1bTmp;
#endif
#if 1//(DEV_BUS_TYPE == RT_PCI_INTERFACE)
TotalPktLen = FwBufLen;
#else
TotalPktLen = FwBufLen+pHalData->HWDescHeadLength;
#endif
if((TotalPktLen+TXDESC_OFFSET) > MAX_CMDBUF_SZ)
{
DBG_871X(" WARNING %s => Total packet len = %d > MAX_CMDBUF_SZ:%d \n"
,__FUNCTION__,(TotalPktLen+TXDESC_OFFSET),MAX_CMDBUF_SZ);
return _FAIL;
}
pGenBufReservedPagePacket = rtw_zmalloc(TotalPktLen);//GetGenTempBuffer (Adapter, TotalPktLen);
if (!pGenBufReservedPagePacket)
return _FAIL;
ReservedPagePacket = (u1Byte *)pGenBufReservedPagePacket;
_rtw_memset(ReservedPagePacket, 0, TotalPktLen);
#if 1//(DEV_BUS_TYPE == RT_PCI_INTERFACE)
_rtw_memcpy(ReservedPagePacket, FwbufferPtr, FwBufLen);
#else
PlatformMoveMemory(ReservedPagePacket+Adapter->HWDescHeadLength , FwbufferPtr, FwBufLen);
#endif
//---------------------------------------------------------
// 1. Pause BCN
//---------------------------------------------------------
//Set REG_CR bit 8. DMA beacon by SW.
#if (DEV_BUS_TYPE == RT_PCI_INTERFACE)
u1bTmp = PlatformEFIORead1Byte(Adapter, REG_CR+1);
PlatformEFIOWrite1Byte(Adapter, REG_CR+1, (u1bTmp|BIT0));
#else
// Remove for temparaily because of the code on v2002 is not sync to MERGE_TMEP for USB/SDIO.
// De not remove this part on MERGE_TEMP. by tynli.
//pHalData->RegCR_1 |= (BIT0);
//PlatformEFIOWrite1Byte(Adapter, REG_CR+1, pHalData->RegCR_1);
#endif
// Disable Hw protection for a time which revserd for Hw sending beacon.
// Fix download reserved page packet fail that access collision with the protection time.
// 2010.05.11. Added by tynli.
val8 = rtw_read8(Adapter, REG_BCN_CTRL);
val8 &= ~EN_BCN_FUNCTION;
val8 |= DIS_TSF_UDT;
rtw_write8(Adapter, REG_BCN_CTRL, val8);
#if 0//(DEV_BUS_TYPE == RT_PCI_INTERFACE)
tmpReg422 = PlatformEFIORead1Byte(Adapter, REG_FWHW_TXQ_CTRL+2);
if( tmpReg422&BIT6)
bRecover = TRUE;
PlatformEFIOWrite1Byte(Adapter, REG_FWHW_TXQ_CTRL+2, tmpReg422&(~BIT6));
#else
// Set FWHW_TXQ_CTRL 0x422[6]=0 to tell Hw the packet is not a real beacon frame.
if(pHalData->RegFwHwTxQCtrl & BIT(6))
bRecover=_TRUE;
PlatformEFIOWrite1Byte(Adapter, REG_FWHW_TXQ_CTRL+2, (pHalData->RegFwHwTxQCtrl&(~BIT(6))));
pHalData->RegFwHwTxQCtrl &= (~ BIT(6));
#endif
//---------------------------------------------------------
// 2. Adjust LLT table to an even boundary.
//---------------------------------------------------------
#if 0//(DEV_BUS_TYPE == RT_SDIO_INTERFACE)
txpktbuf_bndy = 10; // rsvd page start address should be an even value.
rtStatus = InitLLTTable8703BS(Adapter, txpktbuf_bndy);
if(RT_STATUS_SUCCESS != rtStatus){
DBG_8192C("_CheckWLANFwPatchBTFwReady_8703B(): Failed to init LLT!\n");
return RT_STATUS_FAILURE;
}
// Init Tx boundary.
PlatformEFIOWrite1Byte(Adapter, REG_DWBCN0_CTRL_8703B+1, (u1Byte)txpktbuf_bndy);
#endif
//---------------------------------------------------------
// 3. Write Fw to Tx packet buffer by reseverd page.
//---------------------------------------------------------
do
{
// download rsvd page.
// Clear beacon valid check bit.
BcnValidReg = PlatformEFIORead1Byte(Adapter, REG_TDECTRL+2);
PlatformEFIOWrite1Byte(Adapter, REG_TDECTRL+2, BcnValidReg&(~BIT(0)));
//BT patch is big, we should set 0x209 < 0x40 suggested from Gimmy
RT_TRACE(_module_mp_, _drv_info_,("0x209:%x\n",
PlatformEFIORead1Byte(Adapter, REG_TDECTRL+1)));//209 < 0x40
PlatformEFIOWrite1Byte(Adapter, REG_TDECTRL+1, (0x90-0x20*(times-1)));
DBG_871X("0x209:0x%x\n", PlatformEFIORead1Byte(Adapter, REG_TDECTRL+1));
RT_TRACE(_module_mp_, _drv_info_,("0x209:%x\n",
PlatformEFIORead1Byte(Adapter, REG_TDECTRL+1)));
#if 0
// Acquice TX spin lock before GetFwBuf and send the packet to prevent system deadlock.
// Advertised by Roger. Added by tynli. 2010.02.22.
PlatformAcquireSpinLock(Adapter, RT_TX_SPINLOCK);
if(MgntGetFWBuffer(Adapter, &pTcb, &pBuf))
{
PlatformMoveMemory(pBuf->Buffer.VirtualAddress, ReservedPagePacket, TotalPktLen);
CmdSendPacket(Adapter, pTcb, pBuf, TotalPktLen, DESC_PACKET_TYPE_NORMAL, FALSE);
}
else
dbgdump("SetFwRsvdPagePkt(): MgntGetFWBuffer FAIL!!!!!!!!.\n");
PlatformReleaseSpinLock(Adapter, RT_TX_SPINLOCK);
#else
/*---------------------------------------------------------
tx reserved_page_packet
----------------------------------------------------------*/
if ((pmgntframe = rtw_alloc_cmdxmitframe(pxmitpriv)) == NULL) {
rtStatus = _FAIL;
goto exit;
}
//update attribute
pattrib = &pmgntframe->attrib;
update_mgntframe_attrib(Adapter, pattrib);
pattrib->qsel = QSLT_BEACON;
pattrib->pktlen = pattrib->last_txcmdsz = FwBufLen ;
//_rtw_memset(pmgntframe->buf_addr, 0, TotalPktLen+txdesc_size);
//pmgntframe->buf_addr = ReservedPagePacket ;
_rtw_memcpy( (u8*) (pmgntframe->buf_addr + txdesc_offset), ReservedPagePacket, FwBufLen);
DBG_871X("[%d]===>TotalPktLen + TXDESC_OFFSET TotalPacketLen:%d \n", DLBcnCount, (FwBufLen + txdesc_offset));
#ifdef CONFIG_PCI_HCI
dump_mgntframe(Adapter, pmgntframe);
#else
dump_mgntframe_and_wait(Adapter, pmgntframe, 100);
#endif
#endif
#if 1
// check rsvd page download OK.
BcnValidReg = PlatformEFIORead1Byte(Adapter, REG_TDECTRL+2);
while(!(BcnValidReg & BIT(0)) && count <200)
{
count++;
//PlatformSleepUs(10);
rtw_msleep_os(1);
BcnValidReg = PlatformEFIORead1Byte(Adapter, REG_TDECTRL+2);
RT_TRACE(_module_mp_, _drv_notice_,("Poll 0x20A = %x\n", BcnValidReg));
}
DLBcnCount++;
//DBG_871X("##0x208:%08x,0x210=%08x\n",PlatformEFIORead4Byte(Adapter, REG_TDECTRL),PlatformEFIORead4Byte(Adapter, 0x210));
PlatformEFIOWrite1Byte(Adapter, REG_TDECTRL+2,BcnValidReg);
}while((!(BcnValidReg&BIT(0))) && DLBcnCount<5);
#endif
if(DLBcnCount >=5){
DBG_871X(" check rsvd page download OK DLBcnCount =%d \n",DLBcnCount);
rtStatus = _FAIL;
goto exit;
}
if(!(BcnValidReg&BIT(0)))
{
DBG_871X("_WriteFWtoTxPktBuf(): 1 Download RSVD page failed!\n");
rtStatus = _FAIL;
goto exit;
}
//---------------------------------------------------------
// 4. Set Tx boundary to the initial value
//---------------------------------------------------------
//---------------------------------------------------------
// 5. Reset beacon setting to the initial value.
// After _CheckWLANFwPatchBTFwReady().
//---------------------------------------------------------
exit:
if(pGenBufReservedPagePacket)
{
DBG_871X("_WriteBTFWtoTxPktBuf8703B => rtw_mfree pGenBufReservedPagePacket!\n");
rtw_mfree((u8*)pGenBufReservedPagePacket, TotalPktLen);
}
return rtStatus;
}
//
// Description: Determine the contents of H2C BT_FW_PATCH Command sent to FW.
// 2011.10.20 by tynli
//
void
SetFwBTFwPatchCmd(
IN PADAPTER Adapter,
IN u16 FwSize
)
{
u8 u1BTFwPatchParm[H2C_BT_FW_PATCH_LEN]={0};
u8 addr0 = 0;
u8 addr1 = 0xa0;
u8 addr2 = 0x10;
u8 addr3 = 0x80;
RT_TRACE(_module_mp_, _drv_notice_,("SetFwBTFwPatchCmd(): FwSize = %d\n", FwSize));
SET_8703B_H2CCMD_BT_FW_PATCH_SIZE(u1BTFwPatchParm, FwSize);
SET_8703B_H2CCMD_BT_FW_PATCH_ADDR0(u1BTFwPatchParm, addr0);
SET_8703B_H2CCMD_BT_FW_PATCH_ADDR1(u1BTFwPatchParm, addr1);
SET_8703B_H2CCMD_BT_FW_PATCH_ADDR2(u1BTFwPatchParm, addr2);
SET_8703B_H2CCMD_BT_FW_PATCH_ADDR3(u1BTFwPatchParm, addr3);
FillH2CCmd8703B(Adapter, H2C_8703B_BT_FW_PATCH, H2C_BT_FW_PATCH_LEN, u1BTFwPatchParm);
RT_TRACE(_module_mp_, _drv_notice_,("<----SetFwBTFwPatchCmd(): FwSize = %d \n", FwSize));
}
void
SetFwBTPwrCmd(
IN PADAPTER Adapter,
IN u1Byte PwrIdx
)
{
u1Byte u1BTPwrIdxParm[H2C_FORCE_BT_TXPWR_LEN]={0};
RT_TRACE(_module_mp_, _drv_info_,("SetFwBTPwrCmd(): idx = %d\n", PwrIdx));
SET_8703B_H2CCMD_BT_PWR_IDX(u1BTPwrIdxParm, PwrIdx);
RT_TRACE(_module_mp_, _drv_info_,("SetFwBTPwrCmd(): %x %x %x\n",
u1BTPwrIdxParm[0],u1BTPwrIdxParm[1],u1BTPwrIdxParm[2]));
FillH2CCmd8703B(Adapter, H2C_8703B_FORCE_BT_TXPWR, H2C_FORCE_BT_TXPWR_LEN, u1BTPwrIdxParm);
}
//
// Description: WLAN Fw will write BT Fw to BT XRAM and signal driver.
//
// 2011.10.20. by tynli.
//
int
_CheckWLANFwPatchBTFwReady(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u4Byte count=0;
u1Byte u1bTmp;
int ret = _FAIL;
//---------------------------------------------------------
// Check if BT FW patch procedure is ready.
//---------------------------------------------------------
do{
u1bTmp = PlatformEFIORead1Byte(Adapter, REG_HMEBOX_DBG_0_8703B);
if((u1bTmp&BIT6) || (u1bTmp&BIT7))
{
ret = _SUCCESS;
break;
}
count++;
RT_TRACE(_module_mp_, _drv_info_,("0x88=%x, wait for 50 ms (%d) times.\n",
u1bTmp, count));
rtw_msleep_os(50); // 50ms
}while(!((u1bTmp&BIT6) || (u1bTmp&BIT7)) && count < 50);
RT_TRACE(_module_mp_, _drv_notice_,("_CheckWLANFwPatchBTFwReady():"
" Polling ready bit 0x88[7] for %d times.\n", count));
if(count >= 50)
{
RT_TRACE(_module_mp_, _drv_notice_,("_CheckWLANFwPatchBTFwReady():"
" Polling ready bit 0x88[7] FAIL!!\n"));
}
//---------------------------------------------------------
// Reset beacon setting to the initial value.
//---------------------------------------------------------
#if 0//(DEV_BUS_TYPE == RT_PCI_INTERFACE)
if(LLT_table_init(Adapter, FALSE, 0) == RT_STATUS_FAILURE)
{
dbgdump("Init self define for BT Fw patch LLT table fail.\n");
//return RT_STATUS_FAILURE;
}
#endif
u1bTmp = rtw_read8(Adapter, REG_BCN_CTRL);
u1bTmp |= EN_BCN_FUNCTION;
u1bTmp &= ~DIS_TSF_UDT;
rtw_write8(Adapter, REG_BCN_CTRL, u1bTmp);
// To make sure that if there exists an adapter which would like to send beacon.
// If exists, the origianl value of 0x422[6] will be 1, we should check this to
// prevent from setting 0x422[6] to 0 after download reserved page, or it will cause
// the beacon cannot be sent by HW.
// 2010.06.23. Added by tynli.
#if 0//(DEV_BUS_TYPE == RT_PCI_INTERFACE)
u1bTmp = PlatformEFIORead1Byte(Adapter, REG_FWHW_TXQ_CTRL+2);
PlatformEFIOWrite1Byte(Adapter, REG_FWHW_TXQ_CTRL+2, (u1bTmp|BIT6));
#else
PlatformEFIOWrite1Byte(Adapter, REG_FWHW_TXQ_CTRL+2, (pHalData->RegFwHwTxQCtrl|BIT(6)));
pHalData->RegFwHwTxQCtrl |= BIT(6);
#endif
// Clear CR[8] or beacon packet will not be send to TxBuf anymore.
u1bTmp = PlatformEFIORead1Byte(Adapter, REG_CR+1);
PlatformEFIOWrite1Byte(Adapter, REG_CR+1, (u1bTmp&(~BIT0)));
return ret;
}
int ReservedPage_Compare(PADAPTER Adapter,PRT_MP_FIRMWARE pFirmware,u32 BTPatchSize)
{
u8 temp,ret,lastBTsz;
u32 u1bTmp=0,address_start=0,count=0,i=0;
u8 *myBTFwBuffer = NULL;
myBTFwBuffer = rtw_zmalloc(BTPatchSize);
if (myBTFwBuffer == NULL)
{
DBG_871X("%s can't be executed due to the failed malloc.\n", __FUNCTION__);
Adapter->mppriv.bTxBufCkFail=_TRUE;
return _FALSE;
}
temp=rtw_read8(Adapter,0x209);
address_start=(temp*128)/8;
rtw_write32(Adapter,0x140,0x00000000);
rtw_write32(Adapter,0x144,0x00000000);
rtw_write32(Adapter,0x148,0x00000000);
rtw_write8(Adapter,0x106,0x69);
for(i=0;i<(BTPatchSize/8);i++)
{
rtw_write32(Adapter,0x140,address_start+5+i) ;
//polling until reg 0x140[23]=1;
do{
u1bTmp = rtw_read32(Adapter, 0x140);
if(u1bTmp&BIT(23))
{
ret = _SUCCESS;
break;
}
count++;
DBG_871X("0x140=%x, wait for 10 ms (%d) times.\n",u1bTmp, count);
rtw_msleep_os(10); // 10ms
}while(!(u1bTmp&BIT(23)) && count < 50);
myBTFwBuffer[i*8+0]=rtw_read8(Adapter, 0x144);
myBTFwBuffer[i*8+1]=rtw_read8(Adapter, 0x145);
myBTFwBuffer[i*8+2]=rtw_read8(Adapter, 0x146);
myBTFwBuffer[i*8+3]=rtw_read8(Adapter, 0x147);
myBTFwBuffer[i*8+4]=rtw_read8(Adapter, 0x148);
myBTFwBuffer[i*8+5]=rtw_read8(Adapter, 0x149);
myBTFwBuffer[i*8+6]=rtw_read8(Adapter, 0x14a);
myBTFwBuffer[i*8+7]=rtw_read8(Adapter, 0x14b);
}
rtw_write32(Adapter,0x140,address_start+5+BTPatchSize/8) ;
lastBTsz=BTPatchSize%8;
//polling until reg 0x140[23]=1;
u1bTmp=0;
count=0;
do{
u1bTmp = rtw_read32(Adapter, 0x140);
if(u1bTmp&BIT(23))
{
ret = _SUCCESS;
break;
}
count++;
DBG_871X("0x140=%x, wait for 10 ms (%d) times.\n",u1bTmp, count);
rtw_msleep_os(10); // 10ms
}while(!(u1bTmp&BIT(23)) && count < 50);
for(i=0;i<lastBTsz;i++)
{
myBTFwBuffer[(BTPatchSize/8)*8+i] = rtw_read8(Adapter, (0x144+i));
}
for(i=0;i<BTPatchSize;i++)
{
if(myBTFwBuffer[i]!= pFirmware->szFwBuffer[i])
{
DBG_871X(" In direct myBTFwBuffer[%d]=%x , pFirmware->szFwBuffer=%x\n",i, myBTFwBuffer[i],pFirmware->szFwBuffer[i]);
Adapter->mppriv.bTxBufCkFail=_TRUE;
break;
}
}
if (myBTFwBuffer != NULL)
{
rtw_mfree(myBTFwBuffer, BTPatchSize);
}
return _TRUE;
}
/* As the size of bt firmware is more than 16k which is too big for some platforms, we divide it
* into four parts to transfer. The last parameter of _WriteBTFWtoTxPktBuf8703B is used to indicate
* the location of every part. We call the first 4096 byte of bt firmware as part 1, the second 4096
* part as part 2, the third 4096 part as part 3, the remain as part 4. First we transform the part
* 4 and set the register 0x209 to 0x90, then the 32 bytes description are added to the head of part
* 4, and those bytes are putted at the location 0x90. Second we transform the part 3 and set the
* register 0x209 to 0x70. The 32 bytes description and part 3(4196 bytes) are putted at the location
* 0x70. It can contain 4196 bytes between 0x70 and 0x90. So the last 32 bytes os part 3 will cover the
* 32 bytes description of part4. Using this method, we can put the whole bt firmware to 0x30 and only
* has 32 bytes descrption at the head of part 1.
*/
s32 FirmwareDownloadBT(PADAPTER padapter, PRT_MP_FIRMWARE pFirmware)
{
s32 rtStatus;
u8 *pBTFirmwareBuf;
u32 BTFirmwareLen;
u8 download_time;
s8 i;
rtStatus = _SUCCESS;
pBTFirmwareBuf = NULL;
BTFirmwareLen = 0;
#if 0
//
// Patch BT Fw. Download BT RAM code to Tx packet buffer.
//
if (padapter->bBTFWReady) {
DBG_8192C("%s: BT Firmware is ready!!\n", __FUNCTION__);
return _FAIL;
}
#ifdef CONFIG_FILE_FWIMG
if (rtw_is_file_readable(rtw_fw_mp_bt_file_path) == _TRUE)
{
DBG_8192C("%s: accquire MP BT FW from file:%s\n", __FUNCTION__, rtw_fw_mp_bt_file_path);
rtStatus = rtw_retrieve_from_file(rtw_fw_mp_bt_file_path, FwBuffer, FW_8703B_SIZE);
BTFirmwareLen = rtStatus>=0?rtStatus:0;
pBTFirmwareBuf = FwBuffer;
}
else
#endif // CONFIG_FILE_FWIMG
{
#ifdef CONFIG_EMBEDDED_FWIMG
DBG_8192C("%s: Download MP BT FW from header\n", __FUNCTION__);
pBTFirmwareBuf = (u8*)Rtl8703BFwBTImgArray;
BTFirmwareLen = Rtl8703BFwBTImgArrayLength;
pFirmware->szFwBuffer = pBTFirmwareBuf;
pFirmware->ulFwLength = BTFirmwareLen;
#endif // CONFIG_EMBEDDED_FWIMG
}
DBG_8192C("%s: MP BT Firmware size=%d\n", __FUNCTION__, BTFirmwareLen);
// for h2c cam here should be set to true
padapter->bFWReady = _TRUE;
download_time = (BTFirmwareLen + 4095) / 4096;
DBG_8192C("%s: download_time is %d\n", __FUNCTION__, download_time);
// Download BT patch Fw.
for (i = (download_time-1); i >= 0; i--)
{
if (i == (download_time - 1))
{
rtStatus = _WriteBTFWtoTxPktBuf8703B(padapter, pBTFirmwareBuf+(4096*i), (BTFirmwareLen-(4096*i)), 1);
DBG_8192C("%s: start %d, len %d, time 1\n", __FUNCTION__, 4096*i, BTFirmwareLen-(4096*i));
}
else
{
rtStatus = _WriteBTFWtoTxPktBuf8703B(padapter, pBTFirmwareBuf+(4096*i), 4096, (download_time-i));
DBG_8192C("%s: start %d, len 4096, time %d\n", __FUNCTION__, 4096*i, download_time-i);
}
if (rtStatus != _SUCCESS)
{
DBG_8192C("%s: BT Firmware download to Tx packet buffer fail!\n", __FUNCTION__);
padapter->bBTFWReady = _FALSE;
return rtStatus;
}
}
ReservedPage_Compare(padapter, pFirmware, BTFirmwareLen);
padapter->bBTFWReady = _TRUE;
SetFwBTFwPatchCmd(padapter, (u16)BTFirmwareLen);
rtStatus = _CheckWLANFwPatchBTFwReady(padapter);
DBG_8192C("<===%s: return %s!\n", __FUNCTION__, rtStatus==_SUCCESS?"SUCCESS":"FAIL");
#endif
return rtStatus;
}
#endif // CONFIG_MP_INCLUDED
#if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
void rtl8703b_cal_txdesc_chksum(struct tx_desc *ptxdesc)
{
u16 *usPtr = (u16*)ptxdesc;
u32 count;
u32 index;
u16 checksum = 0;
// Clear first
ptxdesc->txdw7 &= cpu_to_le32(0xffff0000);
// checksume is always calculated by first 32 bytes,
// and it doesn't depend on TX DESC length.
// Thomas,Lucas@SD4,20130515
count = 16;
for (index = 0; index < count; index++) {
checksum ^= le16_to_cpu(*(usPtr + index));
}
ptxdesc->txdw7 |= cpu_to_le32(checksum & 0x0000ffff);
}
#endif
#ifdef CONFIG_SDIO_HCI
u8 send_fw_packet(PADAPTER padapter, u8 *pRam_code, u32 length)
{
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(padapter);
struct xmit_buf xmit_buf_tmp;
struct submit_ctx sctx_tmp;
u8 *pTx_data_buffer = NULL;
u8 *pTmp_buffer = NULL;
u32 modify_ram_size;
u32 tmp_size,tmp_value;
u8 value8;
u32 i,counter;
u8 bRet;
u32 dwDataLength, writeLength;
/* Due to SDIO can not send 32K packet */
if (FW_DOWNLOAD_SIZE_8703B == length) {
length--;
}
modify_ram_size = length << 2;
pTx_data_buffer = rtw_zmalloc(modify_ram_size);
if (NULL == pTx_data_buffer) {
DBG_871X("Allocate buffer fail!!\n");
return _FALSE;
}
_rtw_memset(pTx_data_buffer, 0, modify_ram_size);
/* Transfer to new format */
tmp_size = length >> 1;
for (i = 0;i <= tmp_size;i++){
*(pTx_data_buffer + i * 8) = *(pRam_code + i * 2);
*(pTx_data_buffer + i*8 + 1) = *(pRam_code + i * 2 + 1);
}
/* Gen TX_DESC */
_rtw_memset(pTx_data_buffer, 0, TXDESC_SIZE);
pTmp_buffer = pTx_data_buffer;
#if 0
pTmp_buffer->qsel = BcnQsel;
pTmp_buffer->txpktsize = modify_ram_size - TXDESC_SIZE;
pTmp_buffer->offset = TXDESC_SIZE;
#else
SET_TX_DESC_QUEUE_SEL_8703B(pTmp_buffer, QSLT_BEACON);
SET_TX_DESC_PKT_SIZE_8703B(pTmp_buffer, modify_ram_size - TXDESC_SIZE);
SET_TX_DESC_OFFSET_8703B(pTmp_buffer, TXDESC_SIZE);
#endif
rtl8703b_cal_txdesc_chksum((struct tx_desc*)pTmp_buffer);
/* Send packet */
#if 0
dwDataLength = modify_ram_size;
overlap.Offset = 0;
overlap.OffsetHigh = 0;
overlap.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
bRet = WriteFile(HalVari.hFile_Queue[TX_BCNQ]->handle,pTx_data_buffer,dwDataLength,&writeLength,&overlap);
if(WaitForSingleObject(overlap.hEvent,INFINITE)==WAIT_OBJECT_0){
GetOverlappedResult(HalVari.hFile_Queue[TX_BCNQ]->handle,&overlap,&writeLength,FALSE);
if( writeLength != dwDataLength ){
TCHAR editbuf[100];
sprintf(editbuf,"DL FW Length Err: Write length error:bRet %d writeLength %ld dwDataLength %ld, Error Code:%ld",bRet,writeLength,dwDataLength,GetLastError());
AfxMessageBox(editbuf, MB_OK | MB_ICONERROR);
return FALSE;
}
}
CloseHandle(overlap.hEvent);
#else
xmit_buf_tmp.pdata = pTx_data_buffer;
xmit_buf_tmp.len = modify_ram_size;
rtw_sctx_init(&sctx_tmp, 10);
xmit_buf_tmp.sctx = &sctx_tmp;
if (rtw_write_port(padapter, pdvobjpriv->Queue2Pipe[BCN_QUEUE_INX], xmit_buf_tmp.len, (u8*)&xmit_buf_tmp) == _FAIL) {
DBG_871X("rtw_write_port fail\n");
return _FAIL;
}
#endif
/* check if DMA is OK */
counter = 100;
do {
if (0 == counter) {
DBG_871X("DMA time out!!\n");
return _FALSE;
}
value8 = rtw_read8(padapter, REG_DWBCN0_CTRL_8703B + 2);
counter--;
} while (0 == (value8 & BIT(0)));
rtw_write8(padapter, REG_DWBCN0_CTRL_8703B + 2, value8);
/* Modify ram code by IO method */
tmp_value = rtw_read8(padapter, REG_MCUFWDL + 1);
/* Disable DMA */
rtw_write8(padapter, REG_MCUFWDL + 1, (u8)tmp_value & ~(BIT(5)));
tmp_value = (tmp_value >> 6) << 1;
/* Set page start address */
rtw_write8(padapter, REG_MCUFWDL + 2, (rtw_read8(padapter, REG_MCUFWDL + 2) & 0xF8) | tmp_value);
tmp_size = TXDESC_SIZE >> 2; /* 10bytes */
#if 0
IO_Func.WriteRegister(0x1000, (u2Byte)tmp_size, pRam_code);
#else
_BlockWrite(padapter, pRam_code, tmp_size);
#endif
if (pTmp_buffer != NULL) {
rtw_mfree((u8*)pTmp_buffer, modify_ram_size);
}
return _TRUE;
}
#endif /* CONFIG_SDIO_HCI */
//
// Description:
// Download 8192C firmware code.
//
//
s32 rtl8703b_FirmwareDownload(PADAPTER padapter, BOOLEAN bUsedWoWLANFw)
{
s32 rtStatus = _SUCCESS;
u8 write_fw = 0;
u32 fwdl_start_time;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
s8 R8703BFwImageFileName[] ={RTL8703B_FW_IMG};
u8 *FwImage;
u32 FwImageLen;
u8 *pFwImageFileName;
#ifdef CONFIG_WOWLAN
u8 *FwImageWoWLAN;
u32 FwImageWoWLANLen;
#endif
u8 *pucMappedFile = NULL;
PRT_FIRMWARE_8703B pFirmware = NULL;
PRT_8703B_FIRMWARE_HDR pFwHdr = NULL;
u8 *pFirmwareBuf;
u32 FirmwareLen;
#ifdef CONFIG_FILE_FWIMG
u8 *fwfilepath;
#endif // CONFIG_FILE_FWIMG
u8 value8;
u16 value16;
u32 value32;
u8 dma_iram_sel;
u16 new_chk_sum = 0;
u32 send_pkt_size, pkt_size_tmp;
u32 mem_offset;
u32 counter;
struct dvobj_priv *psdpriv = padapter->dvobj;
struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
RT_TRACE(_module_hal_init_c_, _drv_info_, ("+%s\n", __FUNCTION__));
#ifdef CONFIG_WOWLAN
RT_TRACE(_module_hal_init_c_, _drv_notice_, ("+%s, bUsedWoWLANFw:%d\n", __FUNCTION__,bUsedWoWLANFw));
#endif
pFirmware = (PRT_FIRMWARE_8703B)rtw_zmalloc(sizeof(RT_FIRMWARE_8703B));
if(!pFirmware)
{
rtStatus = _FAIL;
goto exit;
}
{
u8 tmp_ps=0, tmp_rf=0;
tmp_ps=rtw_read8(padapter,0xa3);
tmp_ps&=0xf8;
tmp_ps|=0x02;
//1. write 0xA3[:2:0] = 3b'010
rtw_write8(padapter, 0xa3, tmp_ps);
//2. read power_state = 0xA0[1:0]
tmp_ps=rtw_read8(padapter,0xa0);
tmp_ps&=0x03;
if(tmp_ps != 0x01)
{
DBG_871X(FUNC_ADPT_FMT" tmp_ps=%x \n",FUNC_ADPT_ARG(padapter), tmp_ps);
pdbgpriv->dbg_downloadfw_pwr_state_cnt++;
}
}
#ifdef CONFIG_BT_COEXIST
rtw_btcoex_PreLoadFirmware(padapter);
#endif /* CONFIG_BT_COEXIST */
#ifdef CONFIG_FILE_FWIMG
#ifdef CONFIG_WOWLAN
if (bUsedWoWLANFw)
{
fwfilepath = rtw_fw_wow_file_path;
}
else
#endif // CONFIG_WOWLAN
{
fwfilepath = rtw_fw_file_path;
}
#endif // CONFIG_FILE_FWIMG
#ifdef CONFIG_FILE_FWIMG
if (rtw_is_file_readable(fwfilepath) == _TRUE)
{
DBG_8192C("%s accquire FW from file:%s\n", __FUNCTION__, fwfilepath);
pFirmware->eFWSource = FW_SOURCE_IMG_FILE;
}
else
#endif // CONFIG_FILE_FWIMG
{
#ifdef CONFIG_EMBEDDED_FWIMG
pFirmware->eFWSource = FW_SOURCE_HEADER_FILE;
#else // !CONFIG_EMBEDDED_FWIMG
pFirmware->eFWSource = FW_SOURCE_IMG_FILE; // We should decided by Reg.
#endif // !CONFIG_EMBEDDED_FWIMG
}
switch(pFirmware->eFWSource)
{
case FW_SOURCE_IMG_FILE:
#ifdef CONFIG_FILE_FWIMG
rtStatus = rtw_retrieve_from_file(fwfilepath, FwBuffer, FW_8703B_SIZE);
pFirmware->ulFwLength = rtStatus>=0?rtStatus:0;
pFirmware->szFwBuffer = FwBuffer;
#endif // CONFIG_FILE_FWIMG
break;
case FW_SOURCE_HEADER_FILE:
#if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
if (bUsedWoWLANFw) {
if (!pwrpriv->wowlan_ap_mode) {
ODM_ConfigFWWithHeaderFile(&pHalData->odmpriv,
CONFIG_FW_WoWLAN,
(u8*)&pFirmware->szFwBuffer,
&pFirmware->ulFwLength);
DBG_8192C(" ===> %s fw: %s, size: %d\n",
__FUNCTION__, "WoWLAN",
pFirmware->ulFwLength);
} else {
ODM_ConfigFWWithHeaderFile(&pHalData->odmpriv,
CONFIG_FW_AP_WoWLAN,
(u8*)&pFirmware->szFwBuffer,
&pFirmware->ulFwLength);
DBG_8192C(" ===> %s fw: %s, size: %d\n",
__FUNCTION__, "AP_WoWLAN",
pFirmware->ulFwLength);
}
} else
#endif // CONFIG_WOWLAN
{
ODM_ConfigFWWithHeaderFile(&pHalData->odmpriv, CONFIG_FW_NIC,
(u8*)&pFirmware->szFwBuffer, &pFirmware->ulFwLength);
DBG_8192C("%s fw: %s, size: %d\n", __FUNCTION__, "FW_NIC", pFirmware->ulFwLength);
}
break;
}
if (pFirmware->ulFwLength > FW_8703B_SIZE) {
rtStatus = _FAIL;
DBG_871X_LEVEL(_drv_emerg_, "Firmware size:%u exceed %u\n", pFirmware->ulFwLength, FW_8703B_SIZE);
goto exit;
}
pFirmwareBuf = pFirmware->szFwBuffer;
FirmwareLen = pFirmware->ulFwLength;
// To Check Fw header. Added by tynli. 2009.12.04.
pFwHdr = (PRT_8703B_FIRMWARE_HDR)pFirmwareBuf;
pHalData->FirmwareVersion = le16_to_cpu(pFwHdr->Version);
pHalData->FirmwareSubVersion = le16_to_cpu(pFwHdr->Subversion);
pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->Signature);
DBG_871X("%s: fw_ver=%x fw_subver=%04x sig=0x%x, Month=%02x, Date=%02x, Hour=%02x, Minute=%02x\n",
__FUNCTION__, pHalData->FirmwareVersion, pHalData->FirmwareSubVersion, pHalData->FirmwareSignature
,pFwHdr->Month,pFwHdr->Date,pFwHdr->Hour,pFwHdr->Minute);
if (IS_FW_HEADER_EXIST_8703B(pFwHdr))
{
DBG_871X("%s(): Shift for fw header!\n", __FUNCTION__);
// Shift 32 bytes for FW header
pFirmwareBuf = pFirmwareBuf + 32;
FirmwareLen = FirmwareLen - 32;
}
fwdl_start_time = rtw_get_current_time();
#if 1
DBG_871X("%s by IO write!\n", __FUNCTION__);
/* To check if FW already exists before download FW */
if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) {
rtw_write8(padapter, REG_MCUFWDL, 0x00);
_8051Reset8703(padapter);
}
_FWDownloadEnable(padapter, _TRUE);
while (!RTW_CANNOT_IO(padapter)
&& (write_fw++ < 3 || rtw_get_passing_time_ms(fwdl_start_time) < 500))
{
/* reset FWDL chksum */
rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL)|FWDL_ChkSum_rpt);
rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen);
if (rtStatus != _SUCCESS)
continue;
rtStatus = polling_fwdl_chksum(padapter, 5, 50);
if (rtStatus == _SUCCESS)
break;
}
#else
DBG_871X("%s by Tx pkt write!\n", __FUNCTION__);
if ((rtw_read8(padapter, REG_MCUFWDL) & MCUFWDL_RDY) == 0) {
/* DLFW use HIQ only */
value32 = 0xFF | BIT(31);
rtw_write32(padapter, REG_RQPN, value32);
/* Set beacon boundary to TXFIFO header */
rtw_write8(padapter, REG_BCNQ_BDNY, 0);
rtw_write16(padapter, REG_DWBCN0_CTRL_8703B + 1, BIT(8));
/* SDIO need read this register before send packet */
rtw_read32(padapter, 0x10250020);
_FWDownloadEnable(padapter, _TRUE);
/* Get original check sum */
new_chk_sum = *(pFirmwareBuf + FirmwareLen - 2) | ((u16)*(pFirmwareBuf + FirmwareLen - 1) << 8);
/* Send ram code flow */
dma_iram_sel = 0;
mem_offset = 0;
pkt_size_tmp = FirmwareLen;
while (0 != pkt_size_tmp) {
if (pkt_size_tmp >= FW_DOWNLOAD_SIZE_8703B) {
send_pkt_size = FW_DOWNLOAD_SIZE_8703B;
/* Modify check sum value */
new_chk_sum = (u16)(new_chk_sum ^ (((send_pkt_size - 1) << 2) - TXDESC_SIZE));
}
else{
send_pkt_size = pkt_size_tmp;
new_chk_sum = (u16)(new_chk_sum ^ ((send_pkt_size << 2) - TXDESC_SIZE));
}
if (send_pkt_size == pkt_size_tmp) {
/* last partition packet, write new check sum to ram code file */
*(pFirmwareBuf + FirmwareLen - 2) = new_chk_sum & 0xFF;
*(pFirmwareBuf + FirmwareLen - 1) = (new_chk_sum & 0xFF00) >> 8;
}
/* IRAM select */
rtw_write8(padapter, REG_MCUFWDL + 1, (rtw_read8(padapter, REG_MCUFWDL + 1) & 0x3F) | (dma_iram_sel << 6));
/* Enable DMA */
rtw_write8(padapter, REG_MCUFWDL + 1, rtw_read8(padapter, REG_MCUFWDL + 1) | BIT(5));
if (_FALSE == send_fw_packet(padapter, pFirmwareBuf + mem_offset, send_pkt_size)) {
DBG_871X("%s: Send FW fail !\n", __FUNCTION__);
rtStatus = _FAIL;
goto DLFW_FAIL;
}
dma_iram_sel++;
mem_offset += send_pkt_size;
pkt_size_tmp -= send_pkt_size;
}
} else {
DBG_871X("%s: Downlad FW fail since MCUFWDL_RDY is not set!\n", __FUNCTION__);
rtStatus = _FAIL;
goto DLFW_FAIL;
}
#endif
_FWDownloadEnable(padapter, _FALSE);
rtStatus = _FWFreeToGo(padapter, 10, 200);
if (_SUCCESS != rtStatus)
goto DLFW_FAIL;
DBG_871X("%s: DLFW OK !\n", __FUNCTION__);
DLFW_FAIL:
if (rtStatus == _FAIL) {
/* Disable FWDL_EN */
value8 = rtw_read8(padapter, REG_MCUFWDL);
value8 = (value8 & ~(BIT(0)) & ~(BIT(1)));
rtw_write8(padapter, REG_MCUFWDL, value8);
}
DBG_871X("%s %s. write_fw:%u, %dms\n"
, __FUNCTION__, (rtStatus == _SUCCESS)?"success":"fail"
, write_fw
, rtw_get_passing_time_ms(fwdl_start_time)
);
exit:
if (pFirmware)
rtw_mfree((u8*)pFirmware, sizeof(RT_FIRMWARE_8703B));
rtl8703b_InitializeFirmwareVars(padapter);
DBG_871X(" <=== %s()\n", __FUNCTION__);
return rtStatus;
}
void rtl8703b_InitializeFirmwareVars(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
// Init Fw LPS related.
adapter_to_pwrctl(padapter)->bFwCurrentInPSMode = _FALSE;
//Init H2C cmd.
rtw_write8(padapter, REG_HMETFR, 0x0f);
// Init H2C counter. by tynli. 2009.12.09.
pHalData->LastHMEBoxNum = 0;
// pHalData->H2CQueueHead = 0;
// pHalData->H2CQueueTail = 0;
// pHalData->H2CStopInsertQueue = _FALSE;
}
//===========================================================
// Efuse related code
//===========================================================
static u8
hal_EfuseSwitchToBank(
PADAPTER padapter,
u8 bank,
u8 bPseudoTest)
{
u8 bRet = _FALSE;
u32 value32 = 0;
#ifdef HAL_EFUSE_MEMORY
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
#endif
DBG_8192C("%s: Efuse switch bank to %d\n", __FUNCTION__, bank);
if (bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
pEfuseHal->fakeEfuseBank = bank;
#else
fakeEfuseBank = bank;
#endif
bRet = _TRUE;
}
else
{
value32 = rtw_read32(padapter, EFUSE_TEST);
bRet = _TRUE;
switch (bank)
{
case 0:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
break;
case 1:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0);
break;
case 2:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1);
break;
case 3:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2);
break;
default:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
bRet = _FALSE;
break;
}
rtw_write32(padapter, EFUSE_TEST, value32);
}
return bRet;
}
static void
Hal_GetEfuseDefinition(
PADAPTER padapter,
u8 efuseType,
u8 type,
void *pOut,
u8 bPseudoTest)
{
switch (type)
{
case TYPE_EFUSE_MAX_SECTION:
{
u8 *pMax_section;
pMax_section = (u8*)pOut;
if (efuseType == EFUSE_WIFI)
*pMax_section = EFUSE_MAX_SECTION_8703B;
else
*pMax_section = EFUSE_BT_MAX_SECTION;
}
break;
case TYPE_EFUSE_REAL_CONTENT_LEN:
{
u16 *pu2Tmp;
pu2Tmp = (u16*)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8703B;
else
*pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN;
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
{
u16 *pu2Tmp;
pu2Tmp = (u16*)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8703B-EFUSE_OOB_PROTECT_BYTES);
else
*pu2Tmp = (EFUSE_BT_REAL_BANK_CONTENT_LEN-EFUSE_PROTECT_BYTES_BANK);
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
{
u16 *pu2Tmp;
pu2Tmp = (u16*)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8703B-EFUSE_OOB_PROTECT_BYTES);
else
*pu2Tmp = (EFUSE_BT_REAL_CONTENT_LEN-(EFUSE_PROTECT_BYTES_BANK*3));
}
break;
case TYPE_EFUSE_MAP_LEN:
{
u16 *pu2Tmp;
pu2Tmp = (u16*)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = EFUSE_MAX_MAP_LEN;
else
*pu2Tmp = EFUSE_BT_MAP_LEN;
}
break;
case TYPE_EFUSE_PROTECT_BYTES_BANK:
{
u8 *pu1Tmp;
pu1Tmp = (u8*)pOut;
if (efuseType == EFUSE_WIFI)
*pu1Tmp = EFUSE_OOB_PROTECT_BYTES;
else
*pu1Tmp = EFUSE_PROTECT_BYTES_BANK;
}
break;
case TYPE_EFUSE_CONTENT_LEN_BANK:
{
u16 *pu2Tmp;
pu2Tmp = (u16*)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8703B;
else
*pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN;
}
break;
default:
{
u8 *pu1Tmp;
pu1Tmp = (u8*)pOut;
*pu1Tmp = 0;
}
break;
}
}
#define VOLTAGE_V25 0x03
#define LDOE25_SHIFT 28
//=================================================================
// The following is for compile ok
// That should be merged with the original in the future
//=================================================================
#define EFUSE_ACCESS_ON_8703 0x69 // For RTL8703 only.
#define EFUSE_ACCESS_OFF_8703 0x00 // For RTL8703 only.
#define REG_EFUSE_ACCESS_8703 0x00CF // Efuse access protection for RTL8703
//=================================================================
static void Hal_BT_EfusePowerSwitch(
PADAPTER padapter,
u8 bWrite,
u8 PwrState)
{
u8 tempval;
if (PwrState == _TRUE)
{
// enable BT power cut
// 0x6A[14] = 1
tempval = rtw_read8(padapter, 0x6B);
tempval |= BIT(6);
rtw_write8(padapter, 0x6B, tempval);
// Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay
// So don't wirte 0x6A[14]=1 and 0x6A[15]=0 together!
rtw_usleep_os(100);
// disable BT output isolation
// 0x6A[15] = 0
tempval = rtw_read8(padapter, 0x6B);
tempval &= ~BIT(7);
rtw_write8(padapter, 0x6B, tempval);
}
else
{
// enable BT output isolation
// 0x6A[15] = 1
tempval = rtw_read8(padapter, 0x6B);
tempval |= BIT(7);
rtw_write8(padapter, 0x6B, tempval);
// Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay
// So don't wirte 0x6A[14]=1 and 0x6A[15]=0 together!
// disable BT power cut
// 0x6A[14] = 1
tempval = rtw_read8(padapter, 0x6B);
tempval &= ~BIT(6);
rtw_write8(padapter, 0x6B, tempval);
}
}
static void
Hal_EfusePowerSwitch(
PADAPTER padapter,
u8 bWrite,
u8 PwrState)
{
u8 tempval;
u16 tmpV16;
if (PwrState == _TRUE)
{
#ifdef CONFIG_SDIO_HCI
// To avoid cannot access efuse regsiters after disable/enable several times during DTM test.
// Suggested by SD1 IsaacHsu. 2013.07.08, added by tynli.
tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
if (tempval & BIT(0)) // SDIO local register is suspend
{
u8 count = 0;
tempval &= ~BIT(0);
rtw_write8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL, tempval);
// check 0x86[1:0]=10'2h, wait power state to leave suspend
do {
tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
tempval &= 0x3;
if (tempval == 0x02)
break;
count++;
if (count >= 100)
break;
rtw_mdelay_os(10);
} while (1);
if (count >= 100)
{
DBG_8192C(FUNC_ADPT_FMT ": Leave SDIO local register suspend fail! Local 0x86=%#X\n",
FUNC_ADPT_ARG(padapter), tempval);
}
else
{
DBG_8192C(FUNC_ADPT_FMT ": Leave SDIO local register suspend OK! Local 0x86=%#X\n",
FUNC_ADPT_ARG(padapter), tempval);
}
}
#endif // CONFIG_SDIO_HCI
rtw_write8(padapter, REG_EFUSE_ACCESS_8703, EFUSE_ACCESS_ON_8703);
// Reset: 0x0000h[28], default valid
tmpV16 = rtw_read16(padapter, REG_SYS_FUNC_EN);
if (!(tmpV16 & FEN_ELDR)) {
tmpV16 |= FEN_ELDR ;
rtw_write16(padapter, REG_SYS_FUNC_EN, tmpV16);
}
// Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid
tmpV16 = rtw_read16(padapter, REG_SYS_CLKR);
if ((!(tmpV16 & LOADER_CLK_EN)) || (!(tmpV16 & ANA8M))) {
tmpV16 |= (LOADER_CLK_EN | ANA8M) ;
rtw_write16(padapter, REG_SYS_CLKR, tmpV16);
}
if (bWrite == _TRUE)
{
// Enable LDO 2.5V before read/write action
tempval = rtw_read8(padapter, EFUSE_TEST+3);
tempval &= 0x0F;
tempval |= (VOLTAGE_V25 << 4);
rtw_write8(padapter, EFUSE_TEST+3, (tempval | 0x80));
//rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON);
}
}
else
{
rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
if (bWrite == _TRUE) {
// Disable LDO 2.5V after read/write action
tempval = rtw_read8(padapter, EFUSE_TEST+3);
rtw_write8(padapter, EFUSE_TEST+3, (tempval & 0x7F));
}
}
}
static void
hal_ReadEFuse_WiFi(
PADAPTER padapter,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
u8 bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
#endif
u8 *efuseTbl = NULL;
u16 eFuse_Addr=0;
u8 offset, wden;
u8 efuseHeader, efuseExtHdr, efuseData;
u16 i, total, used;
u8 efuse_usage = 0;
//DBG_871X("YJ: ====>%s():_offset=%d _size_byte=%d bPseudoTest=%d\n", __func__, _offset, _size_byte, bPseudoTest);
//
// Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10.
//
if ((_offset+_size_byte) > EFUSE_MAX_MAP_LEN)
{
DBG_8192C("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __FUNCTION__, _offset, _size_byte);
return;
}
efuseTbl = (u8*)rtw_malloc(EFUSE_MAX_MAP_LEN);
if (efuseTbl == NULL)
{
DBG_8192C("%s: alloc efuseTbl fail!\n", __FUNCTION__);
return;
}
// 0xff will be efuse default value instead of 0x00.
_rtw_memset(efuseTbl, 0xFF, EFUSE_MAX_MAP_LEN);
#ifdef CONFIG_DEBUG
if(0)
{
for(i=0; i<256; i++)
//ReadEFuseByte(padapter, i, &efuseTbl[i], _FALSE);
efuse_OneByteRead(padapter, i, &efuseTbl[i], _FALSE);
DBG_871X("Efuse Content:\n");
for(i=0; i<256; i++)
{
if (i % 16 == 0)
printk("\n");
printk("%02X ", efuseTbl[i]);
}
printk("\n");
}
#endif
// switch bank back to bank 0 for later BT and wifi use.
hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
while (AVAILABLE_EFUSE_ADDR(eFuse_Addr))
{
//ReadEFuseByte(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
if (efuseHeader == 0xFF)
{
DBG_8192C("%s: data end at address=%#x\n", __FUNCTION__, eFuse_Addr-1);
break;
}
//DBG_8192C("%s: efuse[0x%X]=0x%02X\n", __FUNCTION__, eFuse_Addr-1, efuseHeader);
// Check PG header for section num.
if (EXT_HEADER(efuseHeader)) //extended header
{
offset = GET_HDR_OFFSET_2_0(efuseHeader);
//DBG_8192C("%s: extended header offset=0x%X\n", __FUNCTION__, offset);
//ReadEFuseByte(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
//DBG_8192C("%s: efuse[0x%X]=0x%02X\n", __FUNCTION__, eFuse_Addr-1, efuseExtHdr);
if (ALL_WORDS_DISABLED(efuseExtHdr))
{
continue;
}
offset |= ((efuseExtHdr & 0xF0) >> 1);
wden = (efuseExtHdr & 0x0F);
}
else
{
offset = ((efuseHeader >> 4) & 0x0f);
wden = (efuseHeader & 0x0f);
}
//DBG_8192C("%s: Offset=%d Worden=0x%X\n", __FUNCTION__, offset, wden);
if (offset < EFUSE_MAX_SECTION_8703B)
{
u16 addr;
// Get word enable value from PG header
// DBG_8192C("%s: Offset=%d Worden=0x%X\n", __FUNCTION__, offset, wden);
addr = offset * PGPKT_DATA_SIZE;
for (i=0; i<EFUSE_MAX_WORD_UNIT; i++)
{
// Check word enable condition in the section
if (!(wden & (0x01<<i)))
{
efuseData = 0;
//ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
// DBG_8192C("%s: efuse[%#X]=0x%02X\n", __FUNCTION__, eFuse_Addr-1, efuseData);
efuseTbl[addr] = efuseData;
efuseData = 0;
//ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
// DBG_8192C("%s: efuse[%#X]=0x%02X\n", __FUNCTION__, eFuse_Addr-1, efuseData);
efuseTbl[addr+1] = efuseData;
}
addr += 2;
}
}
else
{
DBG_8192C(KERN_ERR "%s: offset(%d) is illegal!!\n", __FUNCTION__, offset);
eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
}
}
// Copy from Efuse map to output pointer memory!!!
for (i=0; i<_size_byte; i++)
pbuf[i] = efuseTbl[_offset+i];
#ifdef CONFIG_DEBUG
if(1)
{
DBG_871X("Efuse Realmap:\n");
for(i=0; i<_size_byte; i++)
{
if (i % 16 == 0)
printk("\n");
printk("%02X ", pbuf[i]);
}
printk("\n");
}
#endif
// Calculate Efuse utilization
total = 0;
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
used = eFuse_Addr - 1;
if (total)
efuse_usage = (u8)((used*100)/total);
else
efuse_usage = 100;
if (bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
pEfuseHal->fakeEfuseUsedBytes = used;
#else
fakeEfuseUsedBytes = used;
#endif
}
else
{
rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8*)&used);
rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_USAGE, (u8*)&efuse_usage);
}
if (efuseTbl)
rtw_mfree(efuseTbl, EFUSE_MAX_MAP_LEN);
}
static VOID
hal_ReadEFuse_BT(
PADAPTER padapter,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
u8 bPseudoTest
)
{
#ifdef HAL_EFUSE_MEMORY
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
#endif
u8 *efuseTbl;
u8 bank;
u16 eFuse_Addr;
u8 efuseHeader, efuseExtHdr, efuseData;
u8 offset, wden;
u16 i, total, used;
u8 efuse_usage;
//
// Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10.
//
if ((_offset+_size_byte) > EFUSE_BT_MAP_LEN)
{
DBG_8192C("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __FUNCTION__, _offset, _size_byte);
return;
}
efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN);
if (efuseTbl == NULL) {
DBG_8192C("%s: efuseTbl malloc fail!\n", __FUNCTION__);
return;
}
// 0xff will be efuse default value instead of 0x00.
_rtw_memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
total = 0;
EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &total, bPseudoTest);
for (bank=1; bank<3; bank++) // 8703b Max bake 0~2
{
if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == _FALSE)
{
DBG_8192C("%s: hal_EfuseSwitchToBank Fail!!\n", __FUNCTION__);
goto exit;
}
eFuse_Addr = 0;
while (AVAILABLE_EFUSE_ADDR(eFuse_Addr))
{
//ReadEFuseByte(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
if (efuseHeader == 0xFF) break;
DBG_8192C("%s: efuse[%#X]=0x%02x (header)\n", __FUNCTION__, (((bank-1)*EFUSE_REAL_CONTENT_LEN_8703B)+eFuse_Addr-1), efuseHeader);
// Check PG header for section num.
if (EXT_HEADER(efuseHeader)) //extended header
{
offset = GET_HDR_OFFSET_2_0(efuseHeader);
DBG_8192C("%s: extended header offset_2_0=0x%X\n", __FUNCTION__, offset);
//ReadEFuseByte(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
DBG_8192C("%s: efuse[%#X]=0x%02x (ext header)\n", __FUNCTION__, (((bank-1)*EFUSE_REAL_CONTENT_LEN_8703B)+eFuse_Addr-1), efuseExtHdr);
if (ALL_WORDS_DISABLED(efuseExtHdr))
{
continue;
}
offset |= ((efuseExtHdr & 0xF0) >> 1);
wden = (efuseExtHdr & 0x0F);
}
else
{
offset = ((efuseHeader >> 4) & 0x0f);
wden = (efuseHeader & 0x0f);
}
if (offset < EFUSE_BT_MAX_SECTION)
{
u16 addr;
// Get word enable value from PG header
DBG_8192C("%s: Offset=%d Worden=%#X\n", __FUNCTION__, offset, wden);
addr = offset * PGPKT_DATA_SIZE;
for (i=0; i<EFUSE_MAX_WORD_UNIT; i++)
{
// Check word enable condition in the section
if (!(wden & (0x01<<i)))
{
efuseData = 0;
//ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
DBG_8192C("%s: efuse[%#X]=0x%02X\n", __FUNCTION__, eFuse_Addr-1, efuseData);
efuseTbl[addr] = efuseData;
efuseData = 0;
//ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
DBG_8192C("%s: efuse[%#X]=0x%02X\n", __FUNCTION__, eFuse_Addr-1, efuseData);
efuseTbl[addr+1] = efuseData;
}
addr += 2;
}
}
else
{
DBG_8192C("%s: offset(%d) is illegal!!\n", __FUNCTION__, offset);
eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
}
}
if ((eFuse_Addr-1) < total)
{
DBG_8192C("%s: bank(%d) data end at %#x\n", __FUNCTION__, bank, eFuse_Addr-1);
break;
}
}
// switch bank back to bank 0 for later BT and wifi use.
hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
// Copy from Efuse map to output pointer memory!!!
for (i=0; i<_size_byte; i++)
pbuf[i] = efuseTbl[_offset+i];
//
// Calculate Efuse utilization.
//
EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
used = (EFUSE_BT_REAL_BANK_CONTENT_LEN*(bank-1)) + eFuse_Addr - 1;
DBG_8192C("%s: bank(%d) data end at %#x ,used =%d\n", __FUNCTION__, bank, eFuse_Addr-1,used);
efuse_usage = (u8)((used*100)/total);
if (bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
pEfuseHal->fakeBTEfuseUsedBytes = used;
#else
fakeBTEfuseUsedBytes = used;
#endif
}
else
{
rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8*)&used);
rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_USAGE, (u8*)&efuse_usage);
}
exit:
if (efuseTbl)
rtw_mfree(efuseTbl, EFUSE_BT_MAP_LEN);
}
static void
Hal_ReadEFuse(
PADAPTER padapter,
u8 efuseType,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
u8 bPseudoTest)
{
if (efuseType == EFUSE_WIFI)
hal_ReadEFuse_WiFi(padapter, _offset, _size_byte, pbuf, bPseudoTest);
else
hal_ReadEFuse_BT(padapter, _offset, _size_byte, pbuf, bPseudoTest);
}
static u16
hal_EfuseGetCurrentSize_WiFi(
PADAPTER padapter,
u8 bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
#endif
u16 efuse_addr=0;
u16 start_addr = 0; // for debug
u8 hoffset=0, hworden=0;
u8 efuse_data, word_cnts=0;
u32 count = 0; // for debug
if (bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
efuse_addr = (u16)pEfuseHal->fakeEfuseUsedBytes;
#else
efuse_addr = (u16)fakeEfuseUsedBytes;
#endif
}
else
{
rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8*)&efuse_addr);
}
start_addr = efuse_addr;
DBG_8192C("%s: start_efuse_addr=0x%X\n", __FUNCTION__, efuse_addr);
// switch bank back to bank 0 for later BT and wifi use.
hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
#if 0 // for debug test
efuse_OneByteRead(padapter, 0x1FF, &efuse_data, bPseudoTest);
DBG_8192C(FUNC_ADPT_FMT ": efuse raw 0x1FF=0x%02X\n",
FUNC_ADPT_ARG(padapter), efuse_data);
efuse_data = 0xFF;
#endif // for debug test
count = 0;
while (AVAILABLE_EFUSE_ADDR(efuse_addr))
{
#if 1
if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == _FALSE)
{
DBG_8192C(KERN_ERR "%s: efuse_OneByteRead Fail! addr=0x%X !!\n", __FUNCTION__, efuse_addr);
goto error;
}
#else
ReadEFuseByte(padapter, efuse_addr, &efuse_data, bPseudoTest);
#endif
if (efuse_data == 0xFF) break;
if ((start_addr != 0) && (efuse_addr == start_addr))
{
count++;
DBG_8192C(FUNC_ADPT_FMT ": [WARNING] efuse raw 0x%X=0x%02X not 0xFF!!(%d times)\n",
FUNC_ADPT_ARG(padapter), efuse_addr, efuse_data, count);
efuse_data = 0xFF;
if (count < 4)
{
// try again!
if (count > 2)
{
// try again form address 0
efuse_addr = 0;
start_addr = 0;
}
continue;
}
goto error;
}
if (EXT_HEADER(efuse_data))
{
hoffset = GET_HDR_OFFSET_2_0(efuse_data);
efuse_addr++;
efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
if (ALL_WORDS_DISABLED(efuse_data))
{
continue;
}
hoffset |= ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
}
else
{
hoffset = (efuse_data>>4) & 0x0F;
hworden = efuse_data & 0x0F;
}
word_cnts = Efuse_CalculateWordCnts(hworden);
efuse_addr += (word_cnts*2)+1;
}
if (bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
pEfuseHal->fakeEfuseUsedBytes = efuse_addr;
#else
fakeEfuseUsedBytes = efuse_addr;
#endif
}
else
{
rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8*)&efuse_addr);
}
goto exit;
error:
// report max size to prevent wirte efuse
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_addr, bPseudoTest);
exit:
DBG_8192C("%s: CurrentSize=%d\n", __FUNCTION__, efuse_addr);
return efuse_addr;
}
static u16
hal_EfuseGetCurrentSize_BT(
PADAPTER padapter,
u8 bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
#endif
u16 btusedbytes;
u16 efuse_addr;
u8 bank, startBank;
u8 hoffset=0, hworden=0;
u8 efuse_data, word_cnts=0;
u16 retU2=0;
u8 bContinual = _TRUE;
if (bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
btusedbytes = pEfuseHal->fakeBTEfuseUsedBytes;
#else
btusedbytes = fakeBTEfuseUsedBytes;
#endif
}
else
{
btusedbytes = 0;
rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8*)&btusedbytes);
}
efuse_addr = (u16)((btusedbytes%EFUSE_BT_REAL_BANK_CONTENT_LEN));
startBank = (u8)(1+(btusedbytes/EFUSE_BT_REAL_BANK_CONTENT_LEN));
DBG_8192C("%s: start from bank=%d addr=0x%X\n", __FUNCTION__, startBank, efuse_addr);
EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &retU2, bPseudoTest);
for (bank=startBank; bank<3; bank++)
{
if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == _FALSE)
{
DBG_8192C(KERN_ERR "%s: switch bank(%d) Fail!!\n", __FUNCTION__, bank);
//bank = EFUSE_MAX_BANK;
break;
}
// only when bank is switched we have to reset the efuse_addr.
if (bank != startBank)
efuse_addr = 0;
#if 1
while (AVAILABLE_EFUSE_ADDR(efuse_addr))
{
if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == _FALSE)
{
DBG_8192C(KERN_ERR "%s: efuse_OneByteRead Fail! addr=0x%X !!\n", __FUNCTION__, efuse_addr);
//bank = EFUSE_MAX_BANK;
break;
}
DBG_8192C("%s: efuse_OneByteRead ! addr=0x%X !efuse_data=0x%X! bank =%d\n", __FUNCTION__, efuse_addr,efuse_data,bank);
if (efuse_data == 0xFF) break;
if (EXT_HEADER(efuse_data))
{
hoffset = GET_HDR_OFFSET_2_0(efuse_data);
efuse_addr++;
efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
DBG_8192C("%s: efuse_OneByteRead EXT_HEADER ! addr=0x%X !efuse_data=0x%X! bank =%d\n", __FUNCTION__, efuse_addr,efuse_data,bank);
if (ALL_WORDS_DISABLED(efuse_data))
{
efuse_addr++;
continue;
}
// hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
hoffset |= ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
}
else
{
hoffset = (efuse_data>>4) & 0x0F;
hworden = efuse_data & 0x0F;
}
DBG_8192C(FUNC_ADPT_FMT": Offset=%d Worden=%#X\n",
FUNC_ADPT_ARG(padapter), hoffset, hworden);
word_cnts = Efuse_CalculateWordCnts(hworden);
//read next header
efuse_addr += (word_cnts*2)+1;
}
#else
while ( bContinual &&
efuse_OneByteRead(padapter, efuse_addr ,&efuse_data, bPseudoTest) &&
AVAILABLE_EFUSE_ADDR(efuse_addr))
{
if(efuse_data!=0xFF)
{
if((efuse_data&0x1F) == 0x0F) //extended header
{
hoffset = efuse_data;
efuse_addr++;
efuse_OneByteRead(padapter, efuse_addr ,&efuse_data, bPseudoTest);
if((efuse_data & 0x0F) == 0x0F)
{
efuse_addr++;
continue;
}
else
{
hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
}
}
else
{
hoffset = (efuse_data>>4) & 0x0F;
hworden = efuse_data & 0x0F;
}
word_cnts = Efuse_CalculateWordCnts(hworden);
//read next header
efuse_addr = efuse_addr + (word_cnts*2)+1;
}
else
{
bContinual = _FALSE ;
}
}
#endif
// Check if we need to check next bank efuse
if (efuse_addr < retU2)
{
break;// don't need to check next bank.
}
}
#if 0
retU2 = ((bank-1)*EFUSE_BT_REAL_BANK_CONTENT_LEN) + efuse_addr;
if (bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
pEfuseHal->fakeBTEfuseUsedBytes = retU2;
#else
fakeBTEfuseUsedBytes = retU2;
#endif
}
else
{
rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8*)&retU2);
}
#else
retU2 = ((bank-1)*EFUSE_BT_REAL_BANK_CONTENT_LEN)+efuse_addr;
if(bPseudoTest)
{
pEfuseHal->fakeBTEfuseUsedBytes = retU2;
//RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->fakeBTEfuseUsedBytes));
}
else
{
pEfuseHal->BTEfuseUsedBytes = retU2;
//RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->BTEfuseUsedBytes));
}
#endif
DBG_8192C("%s: CurrentSize=%d\n", __FUNCTION__, retU2);
return retU2;
}
static u16
Hal_EfuseGetCurrentSize(
PADAPTER pAdapter,
u8 efuseType,
u8 bPseudoTest)
{
u16 ret = 0;
if (efuseType == EFUSE_WIFI)
ret = hal_EfuseGetCurrentSize_WiFi(pAdapter, bPseudoTest);
else
ret = hal_EfuseGetCurrentSize_BT(pAdapter, bPseudoTest);
return ret;
}
static u8
Hal_EfuseWordEnableDataWrite(
PADAPTER padapter,
u16 efuse_addr,
u8 word_en,
u8 *data,
u8 bPseudoTest)
{
u16 tmpaddr = 0;
u16 start_addr = efuse_addr;
u8 badworden = 0x0F;
u8 tmpdata[PGPKT_DATA_SIZE];
// DBG_8192C("%s: efuse_addr=%#x word_en=%#x\n", __FUNCTION__, efuse_addr, word_en);
_rtw_memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
if (!(word_en & BIT(0)))
{
tmpaddr = start_addr;
efuse_OneByteWrite(padapter, start_addr++, data[0], bPseudoTest);
efuse_OneByteWrite(padapter, start_addr++, data[1], bPseudoTest);
efuse_OneByteRead(padapter, tmpaddr, &tmpdata[0], bPseudoTest);
efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[1], bPseudoTest);
if ((data[0]!=tmpdata[0]) || (data[1]!=tmpdata[1])) {
badworden &= (~BIT(0));
}
}
if (!(word_en & BIT(1)))
{
tmpaddr = start_addr;
efuse_OneByteWrite(padapter, start_addr++, data[2], bPseudoTest);
efuse_OneByteWrite(padapter, start_addr++, data[3], bPseudoTest);
efuse_OneByteRead(padapter, tmpaddr, &tmpdata[2], bPseudoTest);
efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[3], bPseudoTest);
if ((data[2]!=tmpdata[2]) || (data[3]!=tmpdata[3])) {
badworden &= (~BIT(1));
}
}
if (!(word_en & BIT(2)))
{
tmpaddr = start_addr;
efuse_OneByteWrite(padapter, start_addr++, data[4], bPseudoTest);
efuse_OneByteWrite(padapter, start_addr++, data[5], bPseudoTest);
efuse_OneByteRead(padapter, tmpaddr, &tmpdata[4], bPseudoTest);
efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[5], bPseudoTest);
if ((data[4]!=tmpdata[4]) || (data[5]!=tmpdata[5])) {
badworden &= (~BIT(2));
}
}
if (!(word_en & BIT(3)))
{
tmpaddr = start_addr;
efuse_OneByteWrite(padapter, start_addr++, data[6], bPseudoTest);
efuse_OneByteWrite(padapter, start_addr++, data[7], bPseudoTest);
efuse_OneByteRead(padapter, tmpaddr, &tmpdata[6], bPseudoTest);
efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[7], bPseudoTest);
if ((data[6]!=tmpdata[6]) || (data[7]!=tmpdata[7])) {
badworden &= (~BIT(3));
}
}
return badworden;
}
static s32
Hal_EfusePgPacketRead(
PADAPTER padapter,
u8 offset,
u8 *data,
u8 bPseudoTest)
{
u8 bDataEmpty = _TRUE;
u8 efuse_data, word_cnts=0;
u16 efuse_addr=0;
u8 hoffset=0, hworden=0;
u8 i;
u8 max_section = 0;
s32 ret;
if (data == NULL)
return _FALSE;
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, &max_section, bPseudoTest);
if (offset > max_section)
{
DBG_8192C("%s: Packet offset(%d) is illegal(>%d)!\n", __FUNCTION__, offset, max_section);
return _FALSE;
}
_rtw_memset(data, 0xFF, PGPKT_DATA_SIZE);
ret = _TRUE;
//
// <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP.
// Skip dummy parts to prevent unexpected data read from Efuse.
// By pass right now. 2009.02.19.
//
while (AVAILABLE_EFUSE_ADDR(efuse_addr))
{
if (efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest) == _FALSE)
{
ret = _FALSE;
break;
}
if (efuse_data == 0xFF) break;
if (EXT_HEADER(efuse_data))
{
hoffset = GET_HDR_OFFSET_2_0(efuse_data);
efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
if (ALL_WORDS_DISABLED(efuse_data))
{
DBG_8192C("%s: Error!! All words disabled!\n", __FUNCTION__);
continue;
}
hoffset |= ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
}
else
{
hoffset = (efuse_data>>4) & 0x0F;
hworden = efuse_data & 0x0F;
}
if (hoffset == offset)
{
for (i=0; i<EFUSE_MAX_WORD_UNIT; i++)
{
// Check word enable condition in the section
if (!(hworden & (0x01<<i)))
{
//ReadEFuseByte(padapter, efuse_addr++, &efuse_data, bPseudoTest);
efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
// DBG_8192C("%s: efuse[%#X]=0x%02X\n", __FUNCTION__, efuse_addr+tmpidx, efuse_data);
data[i*2] = efuse_data;
//ReadEFuseByte(padapter, efuse_addr++, &efuse_data, bPseudoTest);
efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
// DBG_8192C("%s: efuse[%#X]=0x%02X\n", __FUNCTION__, efuse_addr+tmpidx, efuse_data);
data[(i*2)+1] = efuse_data;
}
}
}
else
{
word_cnts = Efuse_CalculateWordCnts(hworden);
efuse_addr += word_cnts*2;
}
}
return ret;
}
static u8
hal_EfusePgCheckAvailableAddr(
PADAPTER pAdapter,
u8 efuseType,
u8 bPseudoTest)
{
u16 max_available=0;
u16 current_size;
EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &max_available, bPseudoTest);
// DBG_8192C("%s: max_available=%d\n", __FUNCTION__, max_available);
current_size = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest);
if (current_size >= max_available)
{
DBG_8192C("%s: Error!! current_size(%d)>max_available(%d)\n", __FUNCTION__, current_size, max_available);
return _FALSE;
}
return _TRUE;
}
static void
hal_EfuseConstructPGPkt(
u8 offset,
u8 word_en,
u8 *pData,
PPGPKT_STRUCT pTargetPkt)
{
_rtw_memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE);
pTargetPkt->offset = offset;
pTargetPkt->word_en = word_en;
efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
}
#if 0
static u8
wordEnMatched(
PPGPKT_STRUCT pTargetPkt,
PPGPKT_STRUCT pCurPkt,
u8 *pWden)
{
u8 match_word_en = 0x0F; // default all words are disabled
u8 i;
// check if the same words are enabled both target and current PG packet
if (((pTargetPkt->word_en & BIT(0)) == 0) &&
((pCurPkt->word_en & BIT(0)) == 0))
{
match_word_en &= ~BIT(0); // enable word 0
}
if (((pTargetPkt->word_en & BIT(1)) == 0) &&
((pCurPkt->word_en & BIT(1)) == 0))
{
match_word_en &= ~BIT(1); // enable word 1
}
if (((pTargetPkt->word_en & BIT(2)) == 0) &&
((pCurPkt->word_en & BIT(2)) == 0))
{
match_word_en &= ~BIT(2); // enable word 2
}
if (((pTargetPkt->word_en & BIT(3)) == 0) &&
((pCurPkt->word_en & BIT(3)) == 0))
{
match_word_en &= ~BIT(3); // enable word 3
}
*pWden = match_word_en;
if (match_word_en != 0xf)
return _TRUE;
else
return _FALSE;
}
static u8
hal_EfuseCheckIfDatafollowed(
PADAPTER pAdapter,
u8 word_cnts,
u16 startAddr,
u8 bPseudoTest)
{
u8 bRet=_FALSE;
u8 i, efuse_data;
for (i=0; i<(word_cnts*2); i++)
{
if (efuse_OneByteRead(pAdapter, (startAddr+i) ,&efuse_data, bPseudoTest) == _FALSE)
{
DBG_8192C("%s: efuse_OneByteRead FAIL!!\n", __FUNCTION__);
bRet = _TRUE;
break;
}
if (efuse_data != 0xFF)
{
bRet = _TRUE;
break;
}
}
return bRet;
}
#endif
static u8
hal_EfusePartialWriteCheck(
PADAPTER padapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
u8 bRet=_FALSE;
u16 startAddr=0, efuse_max_available_len=0, efuse_max=0;
u8 efuse_data=0;
#if 0
u8 i, cur_header=0;
u8 new_wden=0, matched_wden=0, badworden=0;
PGPKT_STRUCT curPkt;
#endif
EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest);
EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest);
if (efuseType == EFUSE_WIFI)
{
if (bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes;
#else
startAddr = (u16)fakeEfuseUsedBytes;
#endif
}
else
{
rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8*)&startAddr);
}
}
else
{
if (bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes;
#else
startAddr = (u16)fakeBTEfuseUsedBytes;
#endif
}
else
{
rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8*)&startAddr);
}
}
startAddr %= efuse_max;
DBG_8192C("%s: startAddr=%#X\n", __FUNCTION__, startAddr);
while (1)
{
if (startAddr >= efuse_max_available_len)
{
bRet = _FALSE;
DBG_8192C("%s: startAddr(%d) >= efuse_max_available_len(%d)\n",
__FUNCTION__, startAddr, efuse_max_available_len);
break;
}
if (efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data!=0xFF))
{
#if 1
bRet = _FALSE;
DBG_8192C("%s: Something Wrong! last bytes(%#X=0x%02X) is not 0xFF\n",
__FUNCTION__, startAddr, efuse_data);
break;
#else
if (EXT_HEADER(efuse_data))
{
cur_header = efuse_data;
startAddr++;
efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest);
if (ALL_WORDS_DISABLED(efuse_data))
{
DBG_8192C("%s: Error condition, all words disabled!", __FUNCTION__);
bRet = _FALSE;
break;
}
else
{
curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
curPkt.word_en = efuse_data & 0x0F;
}
}
else
{
cur_header = efuse_data;
curPkt.offset = (cur_header>>4) & 0x0F;
curPkt.word_en = cur_header & 0x0F;
}
curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
// if same header is found but no data followed
// write some part of data followed by the header.
if ((curPkt.offset == pTargetPkt->offset) &&
(hal_EfuseCheckIfDatafollowed(padapter, curPkt.word_cnts, startAddr+1, bPseudoTest) == _FALSE) &&
wordEnMatched(pTargetPkt, &curPkt, &matched_wden) == _TRUE)
{
DBG_8192C("%s: Need to partial write data by the previous wrote header\n", __FUNCTION__);
// Here to write partial data
badworden = Efuse_WordEnableDataWrite(padapter, startAddr+1, matched_wden, pTargetPkt->data, bPseudoTest);
if (badworden != 0x0F)
{
u32 PgWriteSuccess=0;
// if write fail on some words, write these bad words again
if (efuseType == EFUSE_WIFI)
PgWriteSuccess = Efuse_PgPacketWrite(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
else
PgWriteSuccess = Efuse_PgPacketWrite_BT(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
if (!PgWriteSuccess)
{
bRet = _FALSE; // write fail, return
break;
}
}
// partial write ok, update the target packet for later use
for (i=0; i<4; i++)
{
if ((matched_wden & (0x1<<i)) == 0) // this word has been written
{
pTargetPkt->word_en |= (0x1<<i); // disable the word
}
}
pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
}
// read from next header
startAddr = startAddr + (curPkt.word_cnts*2) + 1;
#endif
}
else
{
// not used header, 0xff
*pAddr = startAddr;
// DBG_8192C("%s: Started from unused header offset=%d\n", __FUNCTION__, startAddr));
bRet = _TRUE;
break;
}
}
return bRet;
}
static u8
hal_EfusePgPacketWrite1ByteHeader(
PADAPTER pAdapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u8 bRet=_FALSE;
u8 pg_header=0, tmp_header=0;
u16 efuse_addr=*pAddr;
u8 repeatcnt=0;
// DBG_8192C("%s\n", __FUNCTION__);
pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
do {
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
if (tmp_header != 0xFF) break;
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
{
DBG_8192C("%s: Repeat over limit for pg_header!!\n", __FUNCTION__);
return _FALSE;
}
} while (1);
if (tmp_header != pg_header)
{
DBG_8192C(KERN_ERR "%s: PG Header Fail!!(pg=0x%02X read=0x%02X)\n", __FUNCTION__, pg_header, tmp_header);
return _FALSE;
}
*pAddr = efuse_addr;
return _TRUE;
}
static u8
hal_EfusePgPacketWrite2ByteHeader(
PADAPTER padapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u16 efuse_addr, efuse_max_available_len=0;
u8 pg_header=0, tmp_header=0;
u8 repeatcnt=0;
// DBG_8192C("%s\n", __FUNCTION__);
EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &efuse_max_available_len, bPseudoTest);
efuse_addr = *pAddr;
if (efuse_addr >= efuse_max_available_len)
{
DBG_8192C("%s: addr(%d) over avaliable(%d)!!\n", __FUNCTION__, efuse_addr, efuse_max_available_len);
return _FALSE;
}
pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
// DBG_8192C("%s: pg_header=0x%x\n", __FUNCTION__, pg_header);
do {
efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
if (tmp_header != 0xFF) break;
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
{
DBG_8192C("%s: Repeat over limit for pg_header!!\n", __FUNCTION__);
return _FALSE;
}
} while (1);
if (tmp_header != pg_header)
{
DBG_8192C(KERN_ERR "%s: PG Header Fail!!(pg=0x%02X read=0x%02X)\n", __FUNCTION__, pg_header, tmp_header);
return _FALSE;
}
// to write ext_header
efuse_addr++;
pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
do {
efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
if (tmp_header != 0xFF) break;
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
{
DBG_8192C("%s: Repeat over limit for ext_header!!\n", __FUNCTION__);
return _FALSE;
}
} while (1);
if (tmp_header != pg_header) //offset PG fail
{
DBG_8192C(KERN_ERR "%s: PG EXT Header Fail!!(pg=0x%02X read=0x%02X)\n", __FUNCTION__, pg_header, tmp_header);
return _FALSE;
}
*pAddr = efuse_addr;
return _TRUE;
}
static u8
hal_EfusePgPacketWriteHeader(
PADAPTER padapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u8 bRet=_FALSE;
if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
{
bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
}
else
{
bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
}
return bRet;
}
static u8
hal_EfusePgPacketWriteData(
PADAPTER pAdapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u16 efuse_addr;
u8 badworden;
efuse_addr = *pAddr;
badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr+1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
if (badworden != 0x0F)
{
DBG_8192C("%s: Fail!!\n", __FUNCTION__);
return _FALSE;
}
// DBG_8192C("%s: ok\n", __FUNCTION__);
return _TRUE;
}
static s32
Hal_EfusePgPacketWrite(
PADAPTER padapter,
u8 offset,
u8 word_en,
u8 *pData,
u8 bPseudoTest)
{
PGPKT_STRUCT targetPkt;
u16 startAddr=0;
u8 efuseType=EFUSE_WIFI;
if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
return _FALSE;
hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return _FALSE;
if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return _FALSE;
if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return _FALSE;
return _TRUE;
}
static u8
Hal_EfusePgPacketWrite_BT(
PADAPTER pAdapter,
u8 offset,
u8 word_en,
u8 *pData,
u8 bPseudoTest)
{
PGPKT_STRUCT targetPkt;
u16 startAddr=0;
u8 efuseType=EFUSE_BT;
if(!hal_EfusePgCheckAvailableAddr(pAdapter, efuseType, bPseudoTest))
return _FALSE;
hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
if(!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return _FALSE;
if(!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return _FALSE;
if(!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return _FALSE;
return _TRUE;
}
static void read_chip_version_8703b(PADAPTER padapter)
{
u32 value32;
HAL_DATA_TYPE *pHalData;
pHalData = GET_HAL_DATA(padapter);
value32 = rtw_read32(padapter, REG_SYS_CFG);
pHalData->VersionID.ICType = CHIP_8703B;
pHalData->VersionID.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
pHalData->VersionID.RFType = RF_TYPE_1T1R ;
pHalData->VersionID.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
pHalData->VersionID.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; // IC version (CUT)
// For regulator mode. by tynli. 2011.01.14
pHalData->RegulatorMode = ((value32 & SPS_SEL) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
value32 = rtw_read32(padapter, REG_GPIO_OUTSTS);
pHalData->VersionID.ROMVer = ((value32 & RF_RL_ID) >> 20); // ROM code version.
// For multi-function consideration. Added by Roger, 2010.10.06.
pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
value32 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
pHalData->MultiFunc |= ((value32 & WL_FUNC_EN) ? RT_MULTI_FUNC_WIFI : 0);
pHalData->MultiFunc |= ((value32 & BT_FUNC_EN) ? RT_MULTI_FUNC_BT : 0);
pHalData->MultiFunc |= ((value32 & GPS_FUNC_EN) ? RT_MULTI_FUNC_GPS : 0);
pHalData->PolarityCtl = ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT : RT_POLARITY_LOW_ACT);
rtw_hal_config_rftype(padapter);
/* // mark for chage to use efuse
if( IS_B_CUT(pHalData->VersionID) || IS_C_CUT(pHalData->VersionID))
{
MSG_8192C(" IS_B/C_CUT SWR up 1 level !!!!!!!!!!!!!!!!!\n");
PHY_SetMacReg(padapter, 0x14, BIT23|BIT22|BIT21|BIT20, 0x5); //MAC reg 0x14[23:20] = 4b'0101 (SWR 1.220V)
}else if ( IS_D_CUT(pHalData->VersionID))
{
MSG_8192C(" IS_D_CUT SKIP SWR !!!!!!!!!!!!!!!!!\n");
}
*/
#if 1
dump_chip_info(pHalData->VersionID);
#endif
}
void rtl8703b_InitBeaconParameters(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
u16 val16;
u8 val8;
val8 = DIS_TSF_UDT;
val16 = val8 | (val8 << 8); // port0 and port1
#ifdef CONFIG_BT_COEXIST
// Enable prot0 beacon function for PSTDMA
val16 |= EN_BCN_FUNCTION;
#endif
rtw_write16(padapter, REG_BCN_CTRL, val16);
// TODO: Remove these magic number
rtw_write16(padapter, REG_TBTT_PROHIBIT, 0x6404);// ms
// Firmware will control REG_DRVERLYINT when power saving is enable,
// so don't set this register on STA mode.
if (check_fwstate(&padapter->mlmepriv, WIFI_STATION_STATE) == _FALSE)
rtw_write8(padapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8703B); // 5ms
rtw_write8(padapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8703B); // 2ms
// Suggested by designer timchen. Change beacon AIFS to the largest number
// beacause test chip does not contension before sending beacon. by tynli. 2009.11.03
rtw_write16(padapter, REG_BCNTCFG, 0x660F);
pHalData->RegBcnCtrlVal = rtw_read8(padapter, REG_BCN_CTRL);
pHalData->RegTxPause = rtw_read8(padapter, REG_TXPAUSE);
pHalData->RegFwHwTxQCtrl = rtw_read8(padapter, REG_FWHW_TXQ_CTRL+2);
pHalData->RegReg542 = rtw_read8(padapter, REG_TBTT_PROHIBIT+2);
pHalData->RegCR_1 = rtw_read8(padapter, REG_CR+1);
}
void rtl8703b_InitBeaconMaxError(PADAPTER padapter, u8 InfraMode)
{
#ifdef CONFIG_ADHOC_WORKAROUND_SETTING
rtw_write8(padapter, REG_BCN_MAX_ERR, 0xFF);
#else
//rtw_write8(Adapter, REG_BCN_MAX_ERR, (InfraMode ? 0xFF : 0x10));
#endif
}
void _InitBurstPktLen_8703BS(PADAPTER Adapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
rtw_write8(Adapter, 0x4c7,rtw_read8(Adapter, 0x4c7)|BIT(7)); //enable single pkt ampdu
rtw_write8(Adapter, REG_RX_PKT_LIMIT_8703B, 0x18); //for VHT packet length 11K
rtw_write8(Adapter, REG_MAX_AGGR_NUM_8703B, 0x1F);
rtw_write8(Adapter, REG_PIFS_8703B, 0x00);
rtw_write8(Adapter, REG_FWHW_TXQ_CTRL_8703B, rtw_read8(Adapter, REG_FWHW_TXQ_CTRL)&(~BIT(7)));
if(pHalData->AMPDUBurstMode)
{
rtw_write8(Adapter,REG_AMPDU_BURST_MODE_8703B, 0x5F);
}
rtw_write8(Adapter, REG_AMPDU_MAX_TIME_8703B, 0x70);
// ARFB table 9 for 11ac 5G 2SS
rtw_write32(Adapter, REG_ARFR0_8703B, 0x00000010);
if(IS_NORMAL_CHIP(pHalData->VersionID))
rtw_write32(Adapter, REG_ARFR0_8703B+4, 0xfffff000);
else
rtw_write32(Adapter, REG_ARFR0_8703B+4, 0x3e0ff000);
// ARFB table 10 for 11ac 5G 1SS
rtw_write32(Adapter, REG_ARFR1_8703B, 0x00000010);
rtw_write32(Adapter, REG_ARFR1_8703B+4, 0x003ff000);
}
void _InitLTECoex_8703BS(PADAPTER Adapter)
{
// LTE COEX setting
rtw_write16(Adapter, REG_LTECOEX_WRITE_DATA, 0x7700);
rtw_write32(Adapter, REG_LTECOEX_CTRL, 0xc0020038);
rtw_write8(Adapter, 0x73, 0x04);
}
void _InitMacAPLLSetting_8703B(PADAPTER Adapter)
{
u16 RegValue;
RegValue = rtw_read16(Adapter, REG_AFE_CTRL_4_8703B);
RegValue |= BIT(4);
RegValue |= BIT(15);
rtw_write16(Adapter, REG_AFE_CTRL_4_8703B, RegValue);
}
static void ResumeTxBeacon(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
// 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value
// which should be read from register to a global variable.
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+ResumeTxBeacon\n"));
pHalData->RegFwHwTxQCtrl |= BIT(6);
rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0xff);
pHalData->RegReg542 |= BIT(0);
rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
}
static void StopTxBeacon(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
// 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value
// which should be read from register to a global variable.
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+StopTxBeacon\n"));
pHalData->RegFwHwTxQCtrl &= ~BIT(6);
rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0x64);
pHalData->RegReg542 &= ~BIT(0);
rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
CheckFwRsvdPageContent(padapter); // 2010.06.23. Added by tynli.
}
static void _BeaconFunctionEnable(PADAPTER padapter, u8 Enable, u8 Linked)
{
rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
rtw_write8(padapter, REG_RD_CTRL+1, 0x6F);
}
static void rtl8703b_SetBeaconRelatedRegisters(PADAPTER padapter)
{
u8 val8;
u32 value32;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
u32 bcn_ctrl_reg;
//reset TSF, enable update TSF, correcting TSF On Beacon
//REG_BCN_INTERVAL
//REG_BCNDMATIM
//REG_ATIMWND
//REG_TBTT_PROHIBIT
//REG_DRVERLYINT
//REG_BCN_MAX_ERR
//REG_BCNTCFG //(0x510)
//REG_DUAL_TSF_RST
//REG_BCN_CTRL //(0x550)
bcn_ctrl_reg = REG_BCN_CTRL;
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->iface_type == IFACE_PORT1)
bcn_ctrl_reg = REG_BCN_CTRL_1;
#endif
//
// ATIM window
//
rtw_write16(padapter, REG_ATIMWND, 2);
//
// Beacon interval (in unit of TU).
//
rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
rtl8703b_InitBeaconParameters(padapter);
rtw_write8(padapter, REG_SLOT, 0x09);
//
// Reset TSF Timer to zero, added by Roger. 2008.06.24
//
value32 = rtw_read32(padapter, REG_TCR);
value32 &= ~TSFRST;
rtw_write32(padapter, REG_TCR, value32);
value32 |= TSFRST;
rtw_write32(padapter, REG_TCR, value32);
// NOTE: Fix test chip's bug (about contention windows's randomness)
if (check_fwstate(&padapter->mlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE|WIFI_AP_STATE) == _TRUE)
{
rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
}
_BeaconFunctionEnable(padapter, _TRUE, _TRUE);
ResumeTxBeacon(padapter);
val8 = rtw_read8(padapter, bcn_ctrl_reg);
val8 |= DIS_BCNQ_SUB;
rtw_write8(padapter, bcn_ctrl_reg, val8);
}
void hal_notch_filter_8703b(_adapter *adapter, bool enable)
{
if (enable) {
DBG_871X("Enable notch filter\n");
rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
} else {
DBG_871X("Disable notch filter\n");
rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
}
}
u8 rtl8703b_MRateIdxToARFRId(PADAPTER padapter, u8 rate_idx)
{
u8 ret = 0;
RT_RF_TYPE_DEF_E rftype = (RT_RF_TYPE_DEF_E)GET_RF_TYPE(padapter);
switch(rate_idx){
case RATR_INX_WIRELESS_NGB:
if(rftype == RF_1T1R)
ret = 1;
else
ret = 0;
break;
case RATR_INX_WIRELESS_N:
case RATR_INX_WIRELESS_NG:
if(rftype == RF_1T1R)
ret = 5;
else
ret = 4;
break;
case RATR_INX_WIRELESS_NB:
if(rftype == RF_1T1R)
ret = 3;
else
ret = 2;
break;
case RATR_INX_WIRELESS_GB:
ret = 6;
break;
case RATR_INX_WIRELESS_G:
ret = 7;
break;
case RATR_INX_WIRELESS_B:
ret = 8;
break;
case RATR_INX_WIRELESS_MC:
if(padapter->mlmeextpriv.cur_wireless_mode & WIRELESS_11BG_24N)
ret = 6;
else
ret = 7;
break;
case RATR_INX_WIRELESS_AC_N:
if(rftype == RF_1T1R)// || padapter->MgntInfo.VHTHighestOperaRate <= MGN_VHT1SS_MCS9)
ret = 10;
else
ret = 9;
break;
default:
ret = 0;
break;
}
return ret;
}
void UpdateHalRAMask8703B(PADAPTER padapter, u32 mac_id, u8 rssi_level)
{
u32 mask,rate_bitmap;
u8 shortGIrate = _FALSE;
struct sta_info *psta;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
DBG_871X("%s(): mac_id=%d rssi_level=%d\n", __func__, mac_id, rssi_level);
if (mac_id >= NUM_STA) //CAM_SIZE
{
return;
}
psta = pmlmeinfo->FW_sta_info[mac_id].psta;
if(psta == NULL)
{
return;
}
shortGIrate = query_ra_short_GI(psta);
mask = psta->ra_mask;
rate_bitmap = 0xffffffff;
rate_bitmap = ODM_Get_Rate_Bitmap(&pHalData->odmpriv,mac_id,mask,rssi_level);
DBG_871X("%s => mac_id:%d, networkType:0x%02x, mask:0x%08x\n\t ==> rssi_level:%d, rate_bitmap:0x%08x\n",
__FUNCTION__,mac_id,psta->wireless_mode,mask,rssi_level,rate_bitmap);
mask &= rate_bitmap;
#ifdef CONFIG_BT_COEXIST
rate_bitmap = rtw_btcoex_GetRaMask(padapter);
mask &= ~rate_bitmap;
#endif // CONFIG_BT_COEXIST
#ifdef CONFIG_CMCC_TEST
#ifdef CONFIG_BT_COEXIST
if(pmlmeext->cur_wireless_mode & WIRELESS_11G) {
if (mac_id == 0) {
DBG_871X("CMCC_BT update raid entry, mask=0x%x\n", mask);
//mask &=0xffffffc0; //disable CCK & <12M OFDM rate for 11G mode for CMCC
mask &=0xffffff00; //disable CCK & <24M OFDM rate for 11G mode for CMCC
DBG_871X("CMCC_BT update raid entry, mask=0x%x\n", mask);
}
}
#endif
#endif
if(pHalData->fw_ractrl == _TRUE)
{
rtl8703b_set_FwMacIdConfig_cmd(padapter, mac_id, psta->raid, psta->bw_mode, shortGIrate, mask);
}
//set correct initial date rate for each mac_id
pHalData->INIDATA_RATE[mac_id] = psta->init_rate;
DBG_871X("%s(): mac_id=%d raid=0x%x bw=%d mask=0x%x init_rate=0x%x\n", __func__, mac_id, psta->raid, psta->bw_mode, mask, psta->init_rate);
}
//
// Description: In normal chip, we should send some packet to Hw which will be used by Fw
// in FW LPS mode. The function is to fill the Tx descriptor of this packets, then
// Fw can tell Hw to send these packet derectly.
// Added by tynli. 2009.10.15.
//
//type1:pspoll, type2:null
void rtl8703b_fill_fake_txdesc(
PADAPTER padapter,
u8* pDesc,
u32 BufferLen,
u8 IsPsPoll,
u8 IsBTQosNull,
u8 bDataFrame)
{
// Clear all status
_rtw_memset(pDesc, 0, TXDESC_SIZE);
SET_TX_DESC_FIRST_SEG_8703B(pDesc, 1); //bFirstSeg;
SET_TX_DESC_LAST_SEG_8703B(pDesc, 1); //bLastSeg;
SET_TX_DESC_OFFSET_8703B(pDesc, 0x28); // Offset = 32
SET_TX_DESC_PKT_SIZE_8703B(pDesc, BufferLen); // Buffer size + command header
SET_TX_DESC_QUEUE_SEL_8703B(pDesc, QSLT_MGNT); // Fixed queue of Mgnt queue
// Set NAVUSEHDR to prevent Ps-poll AId filed to be changed to error vlaue by Hw.
if (_TRUE == IsPsPoll)
{
SET_TX_DESC_NAV_USE_HDR_8703B(pDesc, 1);
}
else
{
SET_TX_DESC_HWSEQ_EN_8703B(pDesc, 1); // Hw set sequence number
SET_TX_DESC_HWSEQ_SEL_8703B(pDesc, 0);
}
if (_TRUE ==IsBTQosNull)
{
SET_TX_DESC_BT_INT_8703B(pDesc, 1);
}
SET_TX_DESC_USE_RATE_8703B(pDesc, 1); // use data rate which is set by Sw
SET_TX_DESC_OWN_8703B((pu1Byte)pDesc, 1);
SET_TX_DESC_TX_RATE_8703B(pDesc, DESC8703B_RATE1M);
//
// Encrypt the data frame if under security mode excepct null data. Suggested by CCW.
//
if (_TRUE ==bDataFrame)
{
u32 EncAlg;
EncAlg = padapter->securitypriv.dot11PrivacyAlgrthm;
switch (EncAlg)
{
case _NO_PRIVACY_:
SET_TX_DESC_SEC_TYPE_8703B(pDesc, 0x0);
break;
case _WEP40_:
case _WEP104_:
case _TKIP_:
SET_TX_DESC_SEC_TYPE_8703B(pDesc, 0x1);
break;
case _SMS4_:
SET_TX_DESC_SEC_TYPE_8703B(pDesc, 0x2);
break;
case _AES_:
SET_TX_DESC_SEC_TYPE_8703B(pDesc, 0x3);
break;
default:
SET_TX_DESC_SEC_TYPE_8703B(pDesc, 0x0);
break;
}
}
#if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
// USB interface drop packet if the checksum of descriptor isn't correct.
// Using this checksum can let hardware recovery from packet bulk out error (e.g. Cancel URC, Bulk out error.).
rtl8703b_cal_txdesc_chksum((struct tx_desc*)pDesc);
#endif
}
void rtl8703b_set_hal_ops(struct hal_ops *pHalFunc)
{
pHalFunc->dm_init = &rtl8703b_init_dm_priv;
pHalFunc->dm_deinit = &rtl8703b_deinit_dm_priv;
pHalFunc->read_chip_version = read_chip_version_8703b;
pHalFunc->UpdateRAMaskHandler = &UpdateHalRAMask8703B;
pHalFunc->set_bwmode_handler = &PHY_SetBWMode8703B;
pHalFunc->set_channel_handler = &PHY_SwChnl8703B;
pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8703B;
pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8703B;
pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8703B;
pHalFunc->hal_dm_watchdog = &rtl8703b_HalDmWatchDog;
#ifdef CONFIG_LPS_LCLK_WD_TIMER
pHalFunc->hal_dm_watchdog_in_lps = &rtl8703b_HalDmWatchDog_in_LPS;
#endif
#ifdef CONFIG_C2H_PACKET_EN
pHalFunc->SetHwRegHandlerWithBuf = &SetHwRegWithBuf8703B;
#endif // CONFIG_C2H_PACKET_EN
pHalFunc->SetBeaconRelatedRegistersHandler = &rtl8703b_SetBeaconRelatedRegisters;
pHalFunc->Add_RateATid = &rtl8703b_Add_RateATid;
pHalFunc->run_thread= &rtl8703b_start_thread;
pHalFunc->cancel_thread= &rtl8703b_stop_thread;
pHalFunc->read_bbreg = &PHY_QueryBBReg_8703B;
pHalFunc->write_bbreg = &PHY_SetBBReg_8703B;
pHalFunc->read_rfreg = &PHY_QueryRFReg_8703B;
pHalFunc->write_rfreg = &PHY_SetRFReg_8703B;
// Efuse related function
pHalFunc->BTEfusePowerSwitch = &Hal_BT_EfusePowerSwitch;
pHalFunc->EfusePowerSwitch = &Hal_EfusePowerSwitch;
pHalFunc->ReadEFuse = &Hal_ReadEFuse;
pHalFunc->EFUSEGetEfuseDefinition = &Hal_GetEfuseDefinition;
pHalFunc->EfuseGetCurrentSize = &Hal_EfuseGetCurrentSize;
pHalFunc->Efuse_PgPacketRead = &Hal_EfusePgPacketRead;
pHalFunc->Efuse_PgPacketWrite = &Hal_EfusePgPacketWrite;
pHalFunc->Efuse_WordEnableDataWrite = &Hal_EfuseWordEnableDataWrite;
pHalFunc->Efuse_PgPacketWrite_BT = &Hal_EfusePgPacketWrite_BT;
#ifdef DBG_CONFIG_ERROR_DETECT
pHalFunc->sreset_init_value = &sreset_init_value;
pHalFunc->sreset_reset_value = &sreset_reset_value;
pHalFunc->silentreset = &sreset_reset;
pHalFunc->sreset_xmit_status_check = &rtl8703b_sreset_xmit_status_check;
pHalFunc->sreset_linked_status_check = &rtl8703b_sreset_linked_status_check;
pHalFunc->sreset_get_wifi_status = &sreset_get_wifi_status;
pHalFunc->sreset_inprogress= &sreset_inprogress;
#endif
pHalFunc->GetHalODMVarHandler = GetHalODMVar;
pHalFunc->SetHalODMVarHandler = SetHalODMVar;
#ifdef CONFIG_XMIT_THREAD_MODE
pHalFunc->xmit_thread_handler = &hal_xmit_handler;
#endif
pHalFunc->hal_notch_filter = &hal_notch_filter_8703b;
pHalFunc->c2h_handler = c2h_handler_8703b;
pHalFunc->c2h_id_filter_ccx = c2h_id_filter_ccx_8703b;
pHalFunc->fill_h2c_cmd = &FillH2CCmd8703B;
pHalFunc->fill_fake_txdesc = &rtl8703b_fill_fake_txdesc;
pHalFunc->fw_dl = &rtl8703b_FirmwareDownload;
pHalFunc->hal_get_tx_buff_rsvd_page_num = &GetTxBufferRsvdPageNum8703B;
}
void rtl8703b_InitAntenna_Selection(PADAPTER padapter)
{
#if 0
PHAL_DATA_TYPE pHalData;
u8 val;
pHalData = GET_HAL_DATA(padapter);
#if 0
val = rtw_read8(padapter, REG_LEDCFG2);
// Let 8051 take control antenna settting
val |= BIT(7); // DPDT_SEL_EN, 0x4C[23]
rtw_write8(padapter, REG_LEDCFG2, val);
#else
// TODO: <20130114, Kordan> The following setting is only for DPDT and Fixed board type.
// TODO: A better solution is configure it according EFUSE during the run-time.
PHY_SetMacReg(padapter, 0x64, BIT20, 0x0); //0x66[4]=0
PHY_SetMacReg(padapter, 0x64, BIT24, 0x0); //0x66[8]=0
PHY_SetMacReg(padapter, 0x40, BIT4, 0x0); //0x40[4]=0
PHY_SetMacReg(padapter, 0x40, BIT3, 0x1); //0x40[3]=1
PHY_SetMacReg(padapter, 0x4C, BIT24, 0x1); //0x4C[24:23]=10
PHY_SetMacReg(padapter, 0x4C, BIT23, 0x0); //0x4C[24:23]=10
PHY_SetBBReg(padapter, 0x944, BIT1|BIT0, 0x3); //0x944[1:0]=11
PHY_SetBBReg(padapter, 0x930, bMaskByte0, 0x77); //0x930[7:0]=77
PHY_SetMacReg(padapter, 0x38, BIT11, 0x1); //0x38[11]=1
#endif
#endif
}
void rtl8703b_CheckAntenna_Selection(PADAPTER padapter)
{
#if 0
PHAL_DATA_TYPE pHalData;
u8 val;
pHalData = GET_HAL_DATA(padapter);
val = rtw_read8(padapter, REG_LEDCFG2);
// Let 8051 take control antenna settting
if(!(val &BIT(7))){
val |= BIT(7); // DPDT_SEL_EN, 0x4C[23]
rtw_write8(padapter, REG_LEDCFG2, val);
}
#endif
}
void rtl8703b_DeinitAntenna_Selection(PADAPTER padapter)
{
#if 0
PHAL_DATA_TYPE pHalData;
u8 val;
pHalData = GET_HAL_DATA(padapter);
val = rtw_read8(padapter, REG_LEDCFG2);
// Let 8051 take control antenna settting
val &= ~BIT(7); // DPDT_SEL_EN, clear 0x4C[23]
rtw_write8(padapter, REG_LEDCFG2, val);
#endif
}
void init_hal_spec_8703b(_adapter *adapter)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
hal_spec->macid_num = MACID_NUM_8703B;
hal_spec->sec_cam_ent_num = SEC_CAM_ENT_NUM_8703B;
hal_spec->sec_cap = 0;
hal_spec->nss_num = NSS_NUM_8703B;
hal_spec->band_cap = BAND_CAP_8703B;
hal_spec->bw_cap = BW_CAP_8703B;
hal_spec->proto_cap = PROTO_CAP_8703B;
hal_spec->wl_func = 0
| WL_FUNC_P2P
| WL_FUNC_MIRACAST
| WL_FUNC_TDLS
;
}
void rtl8703b_init_default_value(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData;
u8 i;
pHalData = GET_HAL_DATA(padapter);
padapter->registrypriv.wireless_mode = WIRELESS_11BG_24N;
// init default value
pHalData->fw_ractrl = _FALSE;
if (!adapter_to_pwrctl(padapter)->bkeepfwalive)
pHalData->LastHMEBoxNum = 0;
//init phydm default value
pHalData->bIQKInitialized = _FALSE;
pHalData->odmpriv.RFCalibrateInfo.TM_Trigger = 0;//for IQK
pHalData->odmpriv.RFCalibrateInfo.ThermalValue_HP_index = 0;
for (i=0; i<HP_THERMAL_NUM; i++)
pHalData->odmpriv.RFCalibrateInfo.ThermalValue_HP[i] = 0;
// init Efuse variables
pHalData->EfuseUsedBytes = 0;
pHalData->EfuseUsedPercentage = 0;
#ifdef HAL_EFUSE_MEMORY
pHalData->EfuseHal.fakeEfuseBank = 0;
pHalData->EfuseHal.fakeEfuseUsedBytes = 0;
_rtw_memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE);
_rtw_memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN);
_rtw_memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN);
pHalData->EfuseHal.BTEfuseUsedBytes = 0;
pHalData->EfuseHal.BTEfuseUsedPercentage = 0;
_rtw_memset(pHalData->EfuseHal.BTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
_rtw_memset(pHalData->EfuseHal.BTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
_rtw_memset(pHalData->EfuseHal.BTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
pHalData->EfuseHal.fakeBTEfuseUsedBytes = 0;
_rtw_memset(pHalData->EfuseHal.fakeBTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
_rtw_memset(pHalData->EfuseHal.fakeBTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
_rtw_memset(pHalData->EfuseHal.fakeBTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
#endif
}
u8 GetEEPROMSize8703B(PADAPTER padapter)
{
u8 size = 0;
u32 cr;
cr = rtw_read16(padapter, REG_9346CR);
// 6: EEPROM used is 93C46, 4: boot from E-Fuse.
size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
MSG_8192C("EEPROM type is %s\n", size==4 ? "E-FUSE" : "93C46");
return size;
}
//-------------------------------------------------------------------------
//
// LLT R/W/Init function
//
//-------------------------------------------------------------------------
s32 rtl8703b_InitLLTTable(PADAPTER padapter)
{
u32 start, passing_time;
u32 val32;
s32 ret;
ret = _FAIL;
val32 = rtw_read32(padapter, REG_AUTO_LLT);
val32 |= BIT_AUTO_INIT_LLT;
rtw_write32(padapter, REG_AUTO_LLT, val32);
start = rtw_get_current_time();
do {
val32 = rtw_read32(padapter, REG_AUTO_LLT);
if (!(val32 & BIT_AUTO_INIT_LLT))
{
ret = _SUCCESS;
break;
}
passing_time = rtw_get_passing_time_ms(start);
if (passing_time > 1000)
{
DBG_8192C("%s: FAIL!! REG_AUTO_LLT(0x%X)=%08x\n",
__FUNCTION__, REG_AUTO_LLT, val32);
break;
}
rtw_usleep_os(2);
} while(1);
return ret;
}
#if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
void _DisableGPIO(PADAPTER padapter)
{
/***************************************
j. GPIO_PIN_CTRL 0x44[31:0]=0x000 //
k.Value = GPIO_PIN_CTRL[7:0]
l. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); //write external PIN level
m. GPIO_MUXCFG 0x42 [15:0] = 0x0780
n. LEDCFG 0x4C[15:0] = 0x8080
***************************************/
u8 value8;
u16 value16;
u32 value32;
u32 u4bTmp;
//1. Disable GPIO[7:0]
rtw_write16(padapter, REG_GPIO_PIN_CTRL+2, 0x0000);
value32 = rtw_read32(padapter, REG_GPIO_PIN_CTRL) & 0xFFFF00FF;
u4bTmp = value32 & 0x000000FF;
value32 |= ((u4bTmp<<8) | 0x00FF0000);
rtw_write32(padapter, REG_GPIO_PIN_CTRL, value32);
//2. Disable GPIO[10:8]
rtw_write8(padapter, REG_MAC_PINMUX_CFG, 0x00);
value16 = rtw_read16(padapter, REG_GPIO_IO_SEL) & 0xFF0F;
value8 = (u8) (value16&0x000F);
value16 |= ((value8<<4) | 0x0780);
rtw_write16(padapter, REG_GPIO_IO_SEL, value16);
//3. Disable LED0 & 1
rtw_write16(padapter, REG_LEDCFG0, 0x8080);
// RT_TRACE(COMP_INIT, DBG_LOUD, ("======> Disable GPIO and LED.\n"));
} //end of _DisableGPIO()
void _DisableRFAFEAndResetBB8703B(PADAPTER padapter)
{
/**************************************
a. TXPAUSE 0x522[7:0] = 0xFF //Pause MAC TX queue
b. RF path 0 offset 0x00 = 0x00 // disable RF
c. APSD_CTRL 0x600[7:0] = 0x40
d. SYS_FUNC_EN 0x02[7:0] = 0x16 //reset BB state machine
e. SYS_FUNC_EN 0x02[7:0] = 0x14 //reset BB state machine
***************************************/
u8 eRFPath = 0, value8 = 0;
rtw_write8(padapter, REG_TXPAUSE, 0xFF);
PHY_SetRFReg(padapter, (RF_PATH)eRFPath, 0x0, bMaskByte0, 0x0);
value8 |= APSDOFF;
rtw_write8(padapter, REG_APSD_CTRL, value8);//0x40
// Set BB reset at first
value8 = 0 ;
value8 |= (FEN_USBD | FEN_USBA | FEN_BB_GLB_RSTn);
rtw_write8(padapter, REG_SYS_FUNC_EN, value8 );//0x16
// Set global reset.
value8 &= ~FEN_BB_GLB_RSTn;
rtw_write8(padapter, REG_SYS_FUNC_EN, value8); //0x14
// 2010/08/12 MH We need to set BB/GLBAL reset to save power for SS mode.
// RT_TRACE(COMP_INIT, DBG_LOUD, ("======> RF off and reset BB.\n"));
}
void _DisableRFAFEAndResetBB(PADAPTER padapter)
{
_DisableRFAFEAndResetBB8703B(padapter);
}
void _ResetDigitalProcedure1_8703B(PADAPTER padapter, BOOLEAN bWithoutHWSM)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
if (IS_FW_81xxC(padapter) && (pHalData->FirmwareVersion <= 0x20))
{
#if 0
/*****************************
f. SYS_FUNC_EN 0x03[7:0]=0x54 // reset MAC register, DCORE
g. MCUFWDL 0x80[7:0]=0 // reset MCU ready status
******************************/
u32 value32 = 0;
rtw_write8(padapter, REG_SYS_FUNC_EN+1, 0x54);
rtw_write8(padapter, REG_MCUFWDL, 0);
#else
/*****************************
f. MCUFWDL 0x80[7:0]=0 // reset MCU ready status
g. SYS_FUNC_EN 0x02[10]= 0 // reset MCU register, (8051 reset)
h. SYS_FUNC_EN 0x02[15-12]= 5 // reset MAC register, DCORE
i. SYS_FUNC_EN 0x02[10]= 1 // enable MCU register, (8051 enable)
******************************/
u16 valu16 = 0;
rtw_write8(padapter, REG_MCUFWDL, 0);
valu16 = rtw_read16(padapter, REG_SYS_FUNC_EN);
rtw_write16(padapter, REG_SYS_FUNC_EN, (valu16 & (~FEN_CPUEN)));//reset MCU ,8051
valu16 = rtw_read16(padapter, REG_SYS_FUNC_EN)&0x0FFF;
rtw_write16(padapter, REG_SYS_FUNC_EN, (valu16 |(FEN_HWPDN|FEN_ELDR)));//reset MAC
valu16 = rtw_read16(padapter, REG_SYS_FUNC_EN);
rtw_write16(padapter, REG_SYS_FUNC_EN, (valu16 | FEN_CPUEN));//enable MCU ,8051
#endif
}
else
{
u8 retry_cnts = 0;
// 2010/08/12 MH For USB SS, we can not stop 8051 when we are trying to
// enter IPS/HW&SW radio off. For S3/S4/S5/Disable, we can stop 8051 because
// we will init FW when power on again.
//if(!pDevice->RegUsbSS)
{ // If we want to SS mode, we can not reset 8051.
if(rtw_read8(padapter, REG_MCUFWDL) & BIT1)
{ //IF fw in RAM code, do reset
if(padapter->bFWReady)
{
// 2010/08/25 MH Accordign to RD alfred's suggestion, we need to disable other
// HRCV INT to influence 8051 reset.
rtw_write8(padapter, REG_FWIMR, 0x20);
// 2011/02/15 MH According to Alex's suggestion, close mask to prevent incorrect FW write operation.
rtw_write8(padapter, REG_FTIMR, 0x00);
rtw_write8(padapter, REG_FSIMR, 0x00);
rtw_write8(padapter, REG_HMETFR+3, 0x20);//8051 reset by self
while( (retry_cnts++ <100) && (FEN_CPUEN &rtw_read16(padapter, REG_SYS_FUNC_EN)))
{
rtw_udelay_os(50);//us
// 2010/08/25 For test only We keep on reset 5051 to prevent fail.
//rtw_write8(padapter, REG_HMETFR+3, 0x20);//8051 reset by self
}
// RT_ASSERT((retry_cnts < 100), ("8051 reset failed!\n"));
if (retry_cnts >= 100)
{
// if 8051 reset fail we trigger GPIO 0 for LA
//rtw_write32( padapter,
// REG_GPIO_PIN_CTRL,
// 0x00010100);
// 2010/08/31 MH According to Filen's info, if 8051 reset fail, reset MAC directly.
rtw_write8(padapter, REG_SYS_FUNC_EN+1, 0x50); //Reset MAC and Enable 8051
rtw_mdelay_os(10);
}
// else
// RT_TRACE(COMP_INIT, DBG_LOUD, ("=====> 8051 reset success (%d) .\n",retry_cnts));
}
}
// else
// {
// RT_TRACE(COMP_INIT, DBG_LOUD, ("=====> 8051 in ROM.\n"));
// }
rtw_write8(padapter, REG_SYS_FUNC_EN+1, 0x54); //Reset MAC and Enable 8051
rtw_write8(padapter, REG_MCUFWDL, 0);
}
}
//if(pDevice->RegUsbSS)
//bWithoutHWSM = TRUE; // Sugest by Filen and Issau.
if(bWithoutHWSM)
{
//HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
/*****************************
Without HW auto state machine
g. SYS_CLKR 0x08[15:0] = 0x30A3 //disable MAC clock
h. AFE_PLL_CTRL 0x28[7:0] = 0x80 //disable AFE PLL
i. AFE_XTAL_CTRL 0x24[15:0] = 0x880F //gated AFE DIG_CLOCK
j. SYS_ISO_CTRL 0x00[7:0] = 0xF9 // isolated digital to PON
******************************/
//rtw_write16(padapter, REG_SYS_CLKR, 0x30A3);
//if(!pDevice->RegUsbSS)
// 2011/01/26 MH SD4 Scott suggest to fix UNC-B cut bug.
rtw_write16(padapter, REG_SYS_CLKR, 0x70A3); //modify to 0x70A3 by Scott.
rtw_write8(padapter, REG_AFE_PLL_CTRL, 0x80);
rtw_write16(padapter, REG_AFE_XTAL_CTRL, 0x880F);
//if(!pDevice->RegUsbSS)
rtw_write8(padapter, REG_SYS_ISO_CTRL, 0xF9);
}
else
{
// Disable all RF/BB power
rtw_write8(padapter, REG_RF_CTRL, 0x00);
}
// RT_TRACE(COMP_INIT, DBG_LOUD, ("======> Reset Digital.\n"));
}
void _ResetDigitalProcedure1(PADAPTER padapter, BOOLEAN bWithoutHWSM)
{
_ResetDigitalProcedure1_8703B(padapter, bWithoutHWSM);
}
void _ResetDigitalProcedure2(PADAPTER padapter)
{
//HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
/*****************************
k. SYS_FUNC_EN 0x03[7:0] = 0x44 // disable ELDR runction
l. SYS_CLKR 0x08[15:0] = 0x3083 // disable ELDR clock
m. SYS_ISO_CTRL 0x01[7:0] = 0x83 // isolated ELDR to PON
******************************/
//rtw_write8(padapter, REG_SYS_FUNC_EN+1, 0x44); //marked by Scott.
// 2011/01/26 MH SD4 Scott suggest to fix UNC-B cut bug.
rtw_write16(padapter, REG_SYS_CLKR, 0x70a3); //modify to 0x70a3 by Scott.
rtw_write8(padapter, REG_SYS_ISO_CTRL+1, 0x82); //modify to 0x82 by Scott.
}
void _DisableAnalog(PADAPTER padapter, BOOLEAN bWithoutHWSM)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u16 value16 = 0;
u8 value8 = 0;
if (bWithoutHWSM)
{
/*****************************
n. LDOA15_CTRL 0x20[7:0] = 0x04 // disable A15 power
o. LDOV12D_CTRL 0x21[7:0] = 0x54 // disable digital core power
r. When driver call disable, the ASIC will turn off remaining clock automatically
******************************/
rtw_write8(padapter, REG_LDOA15_CTRL, 0x04);
//rtw_write8(padapter, REG_LDOV12D_CTRL, 0x54);
value8 = rtw_read8(padapter, REG_LDOV12D_CTRL);
value8 &= (~LDV12_EN);
rtw_write8(padapter, REG_LDOV12D_CTRL, value8);
// RT_TRACE(COMP_INIT, DBG_LOUD, (" REG_LDOV12D_CTRL Reg0x21:0x%02x.\n",value8));
}
/*****************************
h. SPS0_CTRL 0x11[7:0] = 0x23 //enter PFM mode
i. APS_FSMCO 0x04[15:0] = 0x4802 // set USB suspend
******************************/
value8 = 0x23;
rtw_write8(padapter, REG_SPS0_CTRL, value8);
if(bWithoutHWSM)
{
//value16 |= (APDM_HOST | /*AFSM_HSUS |*/PFM_ALDN);
// 2010/08/31 According to Filen description, we need to use HW to shut down 8051 automatically.
// Becasue suspend operatione need the asistance of 8051 to wait for 3ms.
value16 |= (APDM_HOST | AFSM_HSUS | PFM_ALDN);
}
else
{
value16 |= (APDM_HOST | AFSM_HSUS | PFM_ALDN);
}
rtw_write16(padapter, REG_APS_FSMCO, value16);//0x4802
rtw_write8(padapter, REG_RSV_CTRL, 0x0e);
#if 0
//tynli_test for suspend mode.
if(!bWithoutHWSM){
rtw_write8(padapter, 0xfe10, 0x19);
}
#endif
// RT_TRACE(COMP_INIT, DBG_LOUD, ("======> Disable Analog Reg0x04:0x%04x.\n",value16));
}
// HW Auto state machine
s32 CardDisableHWSM(PADAPTER padapter, u8 resetMCU)
{
int rtStatus = _SUCCESS;
if (RTW_CANNOT_RUN(padapter))
return rtStatus;
//==== RF Off Sequence ====
_DisableRFAFEAndResetBB(padapter);
// ==== Reset digital sequence ======
_ResetDigitalProcedure1(padapter, _FALSE);
// ==== Pull GPIO PIN to balance level and LED control ======
_DisableGPIO(padapter);
// ==== Disable analog sequence ===
_DisableAnalog(padapter, _FALSE);
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("======> Card disable finished.\n"));
return rtStatus;
}
// without HW Auto state machine
s32 CardDisableWithoutHWSM(PADAPTER padapter)
{
s32 rtStatus = _SUCCESS;
//RT_TRACE(COMP_INIT, DBG_LOUD, ("======> Card Disable Without HWSM .\n"));
if (RTW_CANNOT_RUN(padapter))
return rtStatus;
//==== RF Off Sequence ====
_DisableRFAFEAndResetBB(padapter);
// ==== Reset digital sequence ======
_ResetDigitalProcedure1(padapter, _TRUE);
// ==== Pull GPIO PIN to balance level and LED control ======
_DisableGPIO(padapter);
// ==== Reset digital sequence ======
_ResetDigitalProcedure2(padapter);
// ==== Disable analog sequence ===
_DisableAnalog(padapter, _TRUE);
//RT_TRACE(COMP_INIT, DBG_LOUD, ("<====== Card Disable Without HWSM .\n"));
return rtStatus;
}
#endif // CONFIG_USB_HCI || CONFIG_SDIO_HCI || CONFIG_GSPI_HCI
BOOLEAN
Hal_GetChnlGroup8703B(
IN u8 Channel,
OUT u8 *pGroup
)
{
BOOLEAN bIn24G=TRUE;
if(Channel <= 14)
{
bIn24G=TRUE;
if (1 <= Channel && Channel <= 2 ) *pGroup = 0;
else if (3 <= Channel && Channel <= 5 ) *pGroup = 1;
else if (6 <= Channel && Channel <= 8 ) *pGroup = 2;
else if (9 <= Channel && Channel <= 11) *pGroup = 3;
else if (12 <= Channel && Channel <= 14) *pGroup = 4;
else
{
RT_TRACE(_module_hci_hal_init_c_, _drv_notice_,("==>Hal_GetChnlGroup8703B in 2.4 G, but Channel %d in Group not found \n", Channel));
}
}
else
{
bIn24G=FALSE;
if (36 <= Channel && Channel <= 42) *pGroup = 0;
else if (44 <= Channel && Channel <= 48) *pGroup = 1;
else if (50 <= Channel && Channel <= 58) *pGroup = 2;
else if (60 <= Channel && Channel <= 64) *pGroup = 3;
else if (100 <= Channel && Channel <= 106) *pGroup = 4;
else if (108 <= Channel && Channel <= 114) *pGroup = 5;
else if (116 <= Channel && Channel <= 122) *pGroup = 6;
else if (124 <= Channel && Channel <= 130) *pGroup = 7;
else if (132 <= Channel && Channel <= 138) *pGroup = 8;
else if (140 <= Channel && Channel <= 144) *pGroup = 9;
else if (149 <= Channel && Channel <= 155) *pGroup = 10;
else if (157 <= Channel && Channel <= 161) *pGroup = 11;
else if (165 <= Channel && Channel <= 171) *pGroup = 12;
else if (173 <= Channel && Channel <= 177) *pGroup = 13;
else
{
RT_TRACE(_module_hci_hal_init_c_, _drv_notice_,("==>Hal_GetChnlGroup8703B in 5G, but Channel %d in Group not found \n",Channel));
}
}
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("<==Hal_GetChnlGroup8703B, (%s) Channel = %d, Group =%d,\n",
(bIn24G) ? "2.4G" : "5G", Channel, *pGroup));
return bIn24G;
}
void
Hal_InitPGData(
PADAPTER padapter,
u8 *PROMContent)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u32 i;
u16 value16;
if(_FALSE == pHalData->bautoload_fail_flag)
{ // autoload OK.
// if (IS_BOOT_FROM_EEPROM(padapter))
if (_TRUE == pHalData->EepromOrEfuse)
{
// Read all Content from EEPROM or EFUSE.
for(i = 0; i < HWSET_MAX_SIZE_8703B; i += 2)
{
// value16 = EF2Byte(ReadEEprom(pAdapter, (u2Byte) (i>>1)));
// *((u16*)(&PROMContent[i])) = value16;
}
}
else
{
// Read EFUSE real map to shadow.
EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE);
_rtw_memcpy((void*)PROMContent, (void*)pHalData->efuse_eeprom_data, HWSET_MAX_SIZE_8703B);
}
}
else
{//autoload fail
RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("AutoLoad Fail reported from CR9346!!\n"));
// pHalData->AutoloadFailFlag = _TRUE;
//update to default value 0xFF
if (_FALSE == pHalData->EepromOrEfuse)
EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE);
_rtw_memcpy((void*)PROMContent, (void*)pHalData->efuse_eeprom_data, HWSET_MAX_SIZE_8703B);
}
#ifdef CONFIG_EFUSE_CONFIG_FILE
if (check_phy_efuse_tx_power_info_valid(padapter) == _FALSE) {
if (Hal_readPGDataFromConfigFile(padapter) != _SUCCESS)
DBG_871X_LEVEL(_drv_err_, "invalid phy efuse and read from file fail, will use driver default!!\n");
}
#endif
}
void
Hal_EfuseParseIDCode(
IN PADAPTER padapter,
IN u8 *hwinfo
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u16 EEPROMId;
// Checl 0x8129 again for making sure autoload status!!
EEPROMId = le16_to_cpu(*((u16*)hwinfo));
if (EEPROMId != RTL_EEPROM_ID)
{
DBG_8192C("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
pHalData->bautoload_fail_flag = _TRUE;
}
else
{
pHalData->bautoload_fail_flag = _FALSE;
}
RT_TRACE(_module_hal_init_c_, _drv_notice_, ("EEPROM ID=0x%04x\n", EEPROMId));
}
static void
Hal_EEValueCheck(
IN u8 EEType,
IN PVOID pInValue,
OUT PVOID pOutValue
)
{
switch(EEType)
{
case EETYPE_TX_PWR:
{
u8 *pIn, *pOut;
pIn = (u8*)pInValue;
pOut = (u8*)pOutValue;
if(*pIn <= 63)
{
*pOut = *pIn;
}
else
{
RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("EETYPE_TX_PWR, value=%d is invalid, set to default=0x%x\n",
*pIn, EEPROM_Default_TxPowerLevel));
*pOut = EEPROM_Default_TxPowerLevel;
}
}
break;
default:
break;
}
}
static u8
Hal_GetChnlGroup(
IN u8 chnl
)
{
u8 group=0;
if (chnl < 3) // Cjanel 1-3
group = 0;
else if (chnl < 9) // Channel 4-9
group = 1;
else // Channel 10-14
group = 2;
return group;
}
void
Hal_ReadPowerValueFromPROM_8703B(
IN PADAPTER Adapter,
IN PTxPowerInfo24G pwrInfo24G,
IN u8 * PROMContent,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u4Byte rfPath, eeAddr=EEPROM_TX_PWR_INX_8703B, group,TxCount=0;
_rtw_memset(pwrInfo24G, 0, sizeof(TxPowerInfo24G));
if(0xFF == PROMContent[eeAddr+1])
AutoLoadFail = TRUE;
if(AutoLoadFail)
{
DBG_871X("%s(): Use Default value!\n", __func__);
for(rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++)
{
//2.4G default value
for(group = 0 ; group < MAX_CHNL_GROUP_24G; group++)
{
pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
}
for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
{
if(TxCount==0)
{
pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
}
else
{
pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
}
}
}
return;
}
pHalData->bTXPowerDataReadFromEEPORM = TRUE; //YJ,move,120316
for(rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++)
{
//2 2.4G default value
for(group = 0 ; group < MAX_CHNL_GROUP_24G; group++)
{
pwrInfo24G->IndexCCK_Base[rfPath][group] = PROMContent[eeAddr++];
if(pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
{
pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
}
}
for(group = 0 ; group < MAX_CHNL_GROUP_24G-1; group++)
{
pwrInfo24G->IndexBW40_Base[rfPath][group] = PROMContent[eeAddr++];
if(pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
}
for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
{
if(TxCount==0)
{
pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) /*4bit sign number to 8 bit sign number*/
pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) /*4bit sign number to 8 bit sign number*/
pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
eeAddr++;
} else{
pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3) /*4bit sign number to 8 bit sign number*/
pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) /*4bit sign number to 8 bit sign number*/
pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
eeAddr++;
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) /*4bit sign number to 8 bit sign number*/
pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3) /*4bit sign number to 8 bit sign number*/
pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
eeAddr++;
}
}
/* Ignore the unnecessary 5G parameters parsing, but still consider the efuse address offset */
#define TX_PWR_DIFF_OFFSET_5G 10
eeAddr += (MAX_CHNL_GROUP_5G + TX_PWR_DIFF_OFFSET_5G);
}
}
void
Hal_EfuseParseTxPowerInfo_8703B(
IN PADAPTER padapter,
IN u8* PROMContent,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
TxPowerInfo24G pwrInfo24G;
u8 rfPath, ch, group, TxCount=1;
// RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail));
Hal_ReadPowerValueFromPROM_8703B(padapter, &pwrInfo24G, PROMContent, AutoLoadFail);
for(rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++)
{
for (ch = 0 ; ch < CENTER_CH_2G_NUM; ch++) {
Hal_GetChnlGroup8703B(ch+1, &group);
if(ch == 14-1)
{
pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][5];
pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
}
else
{
pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group];
pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
}
#ifdef CONFIG_DEBUG
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("======= Path %d, ChannelIndex %d, Group %d=======\n",rfPath,ch, group));
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Index24G_CCK_Base[%d][%d] = 0x%x\n",rfPath,ch ,pHalData->Index24G_CCK_Base[rfPath][ch]));
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Index24G_BW40_Base[%d][%d] = 0x%x\n",rfPath,ch,pHalData->Index24G_BW40_Base[rfPath][ch]));
#endif
}
for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
{
pHalData->CCK_24G_Diff[rfPath][TxCount]=pwrInfo24G.CCK_Diff[rfPath][TxCount];
pHalData->OFDM_24G_Diff[rfPath][TxCount]=pwrInfo24G.OFDM_Diff[rfPath][TxCount];
pHalData->BW20_24G_Diff[rfPath][TxCount]=pwrInfo24G.BW20_Diff[rfPath][TxCount];
pHalData->BW40_24G_Diff[rfPath][TxCount]=pwrInfo24G.BW40_Diff[rfPath][TxCount];
#ifdef CONFIG_DEBUG
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("--------------------------------------- 2.4G ---------------------------------------\n"));
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("CCK_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->CCK_24G_Diff[rfPath][TxCount]));
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("OFDM_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->OFDM_24G_Diff[rfPath][TxCount]));
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("BW20_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW20_24G_Diff[rfPath][TxCount]));
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("BW40_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW40_24G_Diff[rfPath][TxCount]));
#endif
}
}
// 2010/10/19 MH Add Regulator recognize for CU.
if(!AutoLoadFail)
{
pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8703B]&0x7); //bit0~2
if(PROMContent[EEPROM_RF_BOARD_OPTION_8703B] == 0xFF)
pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7); //bit0~2
}
else
{
pHalData->EEPROMRegulatory = 0;
}
RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory));
}
VOID
Hal_EfuseParseBoardType_8703B(
IN PADAPTER Adapter,
IN u8* PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if(!AutoloadFail)
{
pHalData->InterfaceSel = (PROMContent[EEPROM_RF_BOARD_OPTION_8703B]&0xE0)>>5;
if(PROMContent[EEPROM_RF_BOARD_OPTION_8703B] == 0xFF)
pHalData->InterfaceSel = (EEPROM_DEFAULT_BOARD_OPTION&0xE0)>>5;
}
else
{
pHalData->InterfaceSel = 0;
}
RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("Board Type: 0x%2x\n", pHalData->InterfaceSel));
}
VOID
Hal_EfuseParseBTCoexistInfo_8703B(
IN PADAPTER padapter,
IN u8* hwinfo,
IN BOOLEAN AutoLoadFail
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
u8 tempval;
u32 tmpu4;
// RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail));
if (!AutoLoadFail)
{
tmpu4 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
if (tmpu4 & BT_FUNC_EN)
pHalData->EEPROMBluetoothCoexist = _TRUE;
else
pHalData->EEPROMBluetoothCoexist = _FALSE;
pHalData->EEPROMBluetoothType = BT_RTL8703B;
tempval = hwinfo[EEPROM_RF_BT_SETTING_8703B];
if(tempval !=0xFF){
pHalData->EEPROMBluetoothAntNum = tempval & BIT(0);
#ifdef CONFIG_USB_HCI
/*if(rtw_get_intf_type(padapter) == RTW_USB)*/
pHalData->ant_path =ODM_RF_PATH_B;//s0
#else //SDIO or PCIE
// EFUSE_0xC3[6] == 0, S1(Main)-ODM_RF_PATH_A;
// EFUSE_0xC3[6] == 1, S0(Aux)-ODM_RF_PATH_B
pHalData->ant_path = (tempval & BIT(6))?ODM_RF_PATH_B:ODM_RF_PATH_A;
#endif
}
else{
pHalData->EEPROMBluetoothAntNum = Ant_x1;
#ifdef CONFIG_USB_HCI
pHalData->ant_path = ODM_RF_PATH_B;//s0
#else
pHalData->ant_path = ODM_RF_PATH_A;
#endif
}
}
else
{
if (padapter->registrypriv.mp_mode == 1)
pHalData->EEPROMBluetoothCoexist = _TRUE;
else
pHalData->EEPROMBluetoothCoexist = _FALSE;
pHalData->EEPROMBluetoothType = BT_RTL8703B;
pHalData->EEPROMBluetoothAntNum = Ant_x1;
#ifdef CONFIG_USB_HCI
pHalData->ant_path = ODM_RF_PATH_B;//s0
#else
pHalData->ant_path = ODM_RF_PATH_A;
#endif
}
#ifdef CONFIG_BT_COEXIST
if (padapter->registrypriv.ant_num > 0) {
DBG_8192C("%s: Apply driver defined antenna number(%d) to replace origin(%d)\n",
__FUNCTION__,
padapter->registrypriv.ant_num,
pHalData->EEPROMBluetoothAntNum==Ant_x2?2:1);
switch (padapter->registrypriv.ant_num) {
case 1:
pHalData->EEPROMBluetoothAntNum = Ant_x1;
break;
case 2:
pHalData->EEPROMBluetoothAntNum = Ant_x2;
break;
default:
DBG_8192C("%s: Discard invalid driver defined antenna number(%d)!\n",
__FUNCTION__, padapter->registrypriv.ant_num);
break;
}
}
rtw_btcoex_SetBTCoexist(padapter, pHalData->EEPROMBluetoothCoexist);
rtw_btcoex_SetChipType(padapter, pHalData->EEPROMBluetoothType);
rtw_btcoex_SetPGAntNum(padapter, pHalData->EEPROMBluetoothAntNum==Ant_x2?2:1);
if (pHalData->EEPROMBluetoothAntNum == Ant_x1)
{
rtw_btcoex_SetSingleAntPath(padapter, pHalData->ant_path);
}
#endif // CONFIG_BT_COEXIST
DBG_8192C("%s: %s BT-coex, ant_num=%d\n",
__FUNCTION__,
pHalData->EEPROMBluetoothCoexist==_TRUE?"Enable":"Disable",
pHalData->EEPROMBluetoothAntNum==Ant_x2?2:1);
}
VOID
Hal_EfuseParseEEPROMVer_8703B(
IN PADAPTER padapter,
IN u8* hwinfo,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
// RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail));
if(!AutoLoadFail)
pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_8703B];
else
pHalData->EEPROMVersion = 1;
RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("Hal_EfuseParseEEPROMVer(), EEVer = %d\n",
pHalData->EEPROMVersion));
}
VOID
Hal_EfuseParseVoltage_8703B(
IN PADAPTER pAdapter,
IN u8* hwinfo,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
//_rtw_memcpy(pHalData->adjuseVoltageVal, &hwinfo[EEPROM_Voltage_ADDR_8703B], 1);
DBG_871X("%s hwinfo[EEPROM_Voltage_ADDR_8703B] =%02x \n",__func__, hwinfo[EEPROM_Voltage_ADDR_8703B]);
pHalData->adjuseVoltageVal = (hwinfo[EEPROM_Voltage_ADDR_8703B] & 0xf0) >> 4 ;
DBG_871X("%s pHalData->adjuseVoltageVal =%x \n",__func__,pHalData->adjuseVoltageVal);
}
VOID
Hal_EfuseParseChnlPlan_8703B(
IN PADAPTER padapter,
IN u8* hwinfo,
IN BOOLEAN AutoLoadFail
)
{
padapter->mlmepriv.ChannelPlan = hal_com_config_channel_plan(
padapter
, hwinfo?hwinfo[EEPROM_ChannelPlan_8703B]:0xFF
, padapter->registrypriv.channel_plan
, RTW_CHPLAN_WORLD_NULL
, AutoLoadFail
);
RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM ChannelPlan=0x%02x\n", padapter->mlmepriv.ChannelPlan));
}
VOID
Hal_EfuseParseCustomerID_8703B(
IN PADAPTER padapter,
IN u8* hwinfo,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
// RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail));
if (!AutoLoadFail)
{
pHalData->EEPROMCustomerID = hwinfo[EEPROM_CustomID_8703B];
}
else
{
pHalData->EEPROMCustomerID = 0;
}
RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM Customer ID: 0x%2x\n", pHalData->EEPROMCustomerID));
}
VOID
Hal_EfuseParseAntennaDiversity_8703B(
IN PADAPTER pAdapter,
IN u8 * hwinfo,
IN BOOLEAN AutoLoadFail
)
{
#ifdef CONFIG_ANTENNA_DIVERSITY
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
struct registry_priv *registry_par = &pAdapter->registrypriv;
if (pHalData->EEPROMBluetoothAntNum == Ant_x1){
pHalData->AntDivCfg = 0;
}
else{
if(registry_par->antdiv_cfg == 2)// 0:OFF , 1:ON, 2:By EFUSE
pHalData->AntDivCfg = 1;
else
pHalData->AntDivCfg = registry_par->antdiv_cfg;
}
// If TRxAntDivType is AUTO in advanced setting, use EFUSE value instead.
if(registry_par->antdiv_type == 0) {
pHalData->TRxAntDivType = hwinfo[EEPROM_RFE_OPTION_8703B];
if (pHalData->TRxAntDivType == 0xFF)
pHalData->TRxAntDivType = S0S1_SW_ANTDIV;//GetRegAntDivType(pAdapter);
else if (pHalData->TRxAntDivType == 0x10)
pHalData->TRxAntDivType = S0S1_SW_ANTDIV; //intrnal switch S0S1
else if (pHalData->TRxAntDivType == 0x11)
pHalData->TRxAntDivType = S0S1_SW_ANTDIV; //intrnal switch S0S1
else
DBG_8192C("%s: efuse[0x%x]=0x%02x is unknown type\n",
__FUNCTION__, EEPROM_RFE_OPTION_8703B, pHalData->TRxAntDivType);
}
else{
pHalData->TRxAntDivType = registry_par->antdiv_type ;//GetRegAntDivType(pAdapter);
}
DBG_8192C("%s: AntDivCfg=%d, AntDivType=%d\n",
__FUNCTION__, pHalData->AntDivCfg, pHalData->TRxAntDivType);
#endif
}
VOID
Hal_EfuseParseXtal_8703B(
IN PADAPTER pAdapter,
IN u8 * hwinfo,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
// RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail));
if(!AutoLoadFail)
{
pHalData->CrystalCap = hwinfo[EEPROM_XTAL_8703B];
if(pHalData->CrystalCap == 0xFF)
pHalData->CrystalCap = EEPROM_Default_CrystalCap_8703B; //what value should 8812 set?
}
else
{
pHalData->CrystalCap = EEPROM_Default_CrystalCap_8703B;
}
RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM CrystalCap: 0x%2x\n", pHalData->CrystalCap));
}
void
Hal_EfuseParseThermalMeter_8703B(
PADAPTER padapter,
u8 *PROMContent,
u8 AutoLoadFail
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
// RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail));
//
// ThermalMeter from EEPROM
//
if (_FALSE == AutoLoadFail)
pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_8703B];
else
pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8703B;
if ((pHalData->EEPROMThermalMeter == 0xff) || (_TRUE == AutoLoadFail))
{
pHalData->odmpriv.RFCalibrateInfo.bAPKThermalMeterIgnore = _TRUE;
pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8703B;
}
RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM ThermalMeter=0x%x\n", pHalData->EEPROMThermalMeter));
}
void Hal_ReadRFGainOffset(
IN PADAPTER Adapter,
IN u8* PROMContent,
IN BOOLEAN AutoloadFail)
{
#ifdef CONFIG_RF_GAIN_OFFSET
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct kfree_data_t *kfree_data = &pHalData->kfree_data;
DBG_871X("%s, kfree config:%d\n", __func__, Adapter->registrypriv.RegRfKFreeEnable);
if ((Adapter->registrypriv.RegRfKFreeEnable == 1) || !AutoloadFail) {
kfree_data->bb_gain[BB_GAIN_2G][RF_PATH_A]
= KFREE_BB_GAIN_2G_TX_OFFSET(EFUSE_Read1Byte(Adapter, PPG_BB_GAIN_2G_TXA_OFFSET_8703B) & PPG_BB_GAIN_2G_TX_OFFSET_MASK);
kfree_data->thermal
= KFREE_THERMAL_OFFSET(EFUSE_Read1Byte(Adapter, PPG_THERMAL_OFFSET_8703B) & PPG_THERMAL_OFFSET_MASK);
if (GET_PG_KFREE_ON_8703B(PROMContent) && PROMContent[0xc1] != 0xff)
kfree_data->flag |= KFREE_FLAG_ON;
if (GET_PG_KFREE_THERMAL_K_ON_8703B(PROMContent) && PROMContent[0xc8] != 0xff)
kfree_data->flag |= KFREE_FLAG_THERMAL_K_ON;
}
if (Adapter->registrypriv.RegRfKFreeEnable == 1) {
kfree_data->flag |= KFREE_FLAG_ON;
kfree_data->flag |= KFREE_FLAG_THERMAL_K_ON;
}
if (kfree_data->flag & KFREE_FLAG_THERMAL_K_ON)
pHalData->EEPROMThermalMeter += kfree_data->thermal;
DBG_871X("kfree flag:%u\n", kfree_data->flag);
if (Adapter->registrypriv.RegRfKFreeEnable == 1 || kfree_data->flag & KFREE_FLAG_ON)
DBG_871X("bb_gain:%d\n", kfree_data->bb_gain[BB_GAIN_2G][RF_PATH_A]);
if (Adapter->registrypriv.RegRfKFreeEnable == 1 || kfree_data->flag & KFREE_FLAG_THERMAL_K_ON)
DBG_871X("thermal:%d\n", kfree_data->thermal);
#endif /*CONFIG_RF_GAIN_OFFSET */
}
u8
BWMapping_8703B(
IN PADAPTER Adapter,
IN struct pkt_attrib *pattrib
)
{
u8 BWSettingOfDesc = 0;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
//DBG_871X("BWMapping pHalData->CurrentChannelBW %d, pattrib->bwmode %d \n",pHalData->CurrentChannelBW,pattrib->bwmode);
if(pHalData->CurrentChannelBW== CHANNEL_WIDTH_80)
{
if(pattrib->bwmode == CHANNEL_WIDTH_80)
BWSettingOfDesc= 2;
else if(pattrib->bwmode == CHANNEL_WIDTH_40)
BWSettingOfDesc = 1;
else
BWSettingOfDesc = 0;
}
else if(pHalData->CurrentChannelBW== CHANNEL_WIDTH_40)
{
if((pattrib->bwmode == CHANNEL_WIDTH_40) || (pattrib->bwmode == CHANNEL_WIDTH_80))
BWSettingOfDesc = 1;
else
BWSettingOfDesc = 0;
}
else
BWSettingOfDesc = 0;
//if(pTcb->bBTTxPacket)
// BWSettingOfDesc = 0;
return BWSettingOfDesc;
}
u8 SCMapping_8703B(PADAPTER Adapter, struct pkt_attrib *pattrib)
{
u8 SCSettingOfDesc = 0;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
//DBG_871X("SCMapping: pHalData->CurrentChannelBW %d, pHalData->nCur80MhzPrimeSC %d, pHalData->nCur40MhzPrimeSC %d \n",pHalData->CurrentChannelBW,pHalData->nCur80MhzPrimeSC,pHalData->nCur40MhzPrimeSC);
if(pHalData->CurrentChannelBW == CHANNEL_WIDTH_80)
{
if(pattrib->bwmode == CHANNEL_WIDTH_80)
{
SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
}
else if(pattrib->bwmode == CHANNEL_WIDTH_40)
{
if(pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
SCSettingOfDesc = VHT_DATA_SC_40_LOWER_OF_80MHZ;
else if(pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
SCSettingOfDesc = VHT_DATA_SC_40_UPPER_OF_80MHZ;
else
DBG_871X("SCMapping: DONOT CARE Mode Setting\n");
}
else
{
if((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
SCSettingOfDesc = VHT_DATA_SC_20_LOWEST_OF_80MHZ;
else if((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
SCSettingOfDesc = VHT_DATA_SC_20_LOWER_OF_80MHZ;
else if((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
SCSettingOfDesc = VHT_DATA_SC_20_UPPER_OF_80MHZ;
else if((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
SCSettingOfDesc = VHT_DATA_SC_20_UPPERST_OF_80MHZ;
else
DBG_871X("SCMapping: DONOT CARE Mode Setting\n");
}
}
else if(pHalData->CurrentChannelBW== CHANNEL_WIDTH_40)
{
//DBG_871X("SCMapping: HT Case: pHalData->CurrentChannelBW %d, pHalData->nCur40MhzPrimeSC %d \n",pHalData->CurrentChannelBW,pHalData->nCur40MhzPrimeSC);
if(pattrib->bwmode == CHANNEL_WIDTH_40)
{
SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
}
else if(pattrib->bwmode == CHANNEL_WIDTH_20)
{
if(pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
{
SCSettingOfDesc = VHT_DATA_SC_20_UPPER_OF_80MHZ;
}
else if(pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
{
SCSettingOfDesc = VHT_DATA_SC_20_LOWER_OF_80MHZ;
}
else
{
SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
}
}
}
else
{
SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
}
return SCSettingOfDesc;
}
static u8 fill_txdesc_sectype(struct pkt_attrib *pattrib)
{
u8 sectype = 0;
if ((pattrib->encrypt > 0) && !pattrib->bswenc)
{
switch (pattrib->encrypt)
{
// SEC_TYPE
case _WEP40_:
case _WEP104_:
case _TKIP_:
case _TKIP_WTMIC_:
sectype = 1;
break;
#ifdef CONFIG_WAPI_SUPPORT
case _SMS4_:
sectype = 2;
break;
#endif
case _AES_:
sectype = 3;
break;
case _NO_PRIVACY_:
default:
break;
}
}
return sectype;
}
static void fill_txdesc_vcs_8703b(PADAPTER padapter, struct pkt_attrib *pattrib, u8 *ptxdesc)
{
//DBG_8192C("cvs_mode=%d\n", pattrib->vcs_mode);
if (pattrib->vcs_mode) {
switch (pattrib->vcs_mode) {
case RTS_CTS:
SET_TX_DESC_RTS_ENABLE_8703B(ptxdesc, 1);
SET_TX_DESC_HW_RTS_ENABLE_8703B(ptxdesc, 1);
break;
case CTS_TO_SELF:
SET_TX_DESC_CTS2SELF_8703B(ptxdesc, 1);
break;
case NONE_VCS:
default:
break;
}
SET_TX_DESC_RTS_RATE_8703B(ptxdesc, 8); // RTS Rate=24M
SET_TX_DESC_RTS_RATE_FB_LIMIT_8703B(ptxdesc, 0xF);
if (padapter->mlmeextpriv.mlmext_info.preamble_mode == PREAMBLE_SHORT) {
SET_TX_DESC_RTS_SHORT_8703B(ptxdesc, 1);
}
// Set RTS BW
if (pattrib->ht_en) {
SET_TX_DESC_RTS_SC_8703B(ptxdesc, SCMapping_8703B(padapter, pattrib));
}
}
}
static void fill_txdesc_phy_8703b(PADAPTER padapter, struct pkt_attrib *pattrib, u8 *ptxdesc)
{
//DBG_8192C("bwmode=%d, ch_off=%d\n", pattrib->bwmode, pattrib->ch_offset);
if (pattrib->ht_en) {
SET_TX_DESC_DATA_BW_8703B(ptxdesc, BWMapping_8703B(padapter, pattrib));
SET_TX_DESC_DATA_SC_8703B(ptxdesc, SCMapping_8703B(padapter, pattrib));
}
}
static void rtl8703b_fill_default_txdesc(
struct xmit_frame *pxmitframe,
u8 *pbuf)
{
PADAPTER padapter;
HAL_DATA_TYPE *pHalData;
struct mlme_ext_priv *pmlmeext;
struct mlme_ext_info *pmlmeinfo;
struct pkt_attrib *pattrib;
s32 bmcst;
_rtw_memset(pbuf, 0, TXDESC_SIZE);
padapter = pxmitframe->padapter;
pHalData = GET_HAL_DATA(padapter);
pmlmeext = &padapter->mlmeextpriv;
pmlmeinfo = &(pmlmeext->mlmext_info);
pattrib = &pxmitframe->attrib;
bmcst = IS_MCAST(pattrib->ra);
if (pxmitframe->frame_tag == DATA_FRAMETAG)
{
u8 drv_userate = 0;
SET_TX_DESC_MACID_8703B(pbuf, pattrib->mac_id);
SET_TX_DESC_RATE_ID_8703B(pbuf, pattrib->raid);
SET_TX_DESC_QUEUE_SEL_8703B(pbuf, pattrib->qsel);
SET_TX_DESC_SEQ_8703B(pbuf, pattrib->seqnum);
SET_TX_DESC_SEC_TYPE_8703B(pbuf, fill_txdesc_sectype(pattrib));
fill_txdesc_vcs_8703b(padapter, pattrib, pbuf);
#ifdef CONFIG_P2P
if (!rtw_p2p_chk_state(&padapter->wdinfo, P2P_STATE_NONE)) {
if (pattrib->icmp_pkt == 1 && padapter->registrypriv.wifi_spec == 1)
drv_userate = 1;
}
#endif
if ((pattrib->ether_type != 0x888e) &&
(pattrib->ether_type != 0x0806) &&
(pattrib->ether_type != 0x88B4) &&
(pattrib->dhcp_pkt != 1) &&
(drv_userate != 1)
#ifdef CONFIG_AUTO_AP_MODE
&& (pattrib->pctrl != _TRUE)
#endif
)
{
// Non EAP & ARP & DHCP type data packet
if (pattrib->ampdu_en == _TRUE) {
SET_TX_DESC_AGG_ENABLE_8703B(pbuf, 1);
SET_TX_DESC_MAX_AGG_NUM_8703B(pbuf, 0x1F);
SET_TX_DESC_AMPDU_DENSITY_8703B(pbuf, pattrib->ampdu_spacing);
}
else {
SET_TX_DESC_AGG_BREAK_8703B(pbuf, 1);
}
fill_txdesc_phy_8703b(padapter, pattrib, pbuf);
SET_TX_DESC_DATA_RATE_FB_LIMIT_8703B(pbuf, 0x1F);
if (pHalData->fw_ractrl == _FALSE) {
SET_TX_DESC_USE_RATE_8703B(pbuf, 1);
if (pHalData->INIDATA_RATE[pattrib->mac_id] & BIT(7)) {
SET_TX_DESC_DATA_SHORT_8703B(pbuf, 1);
}
SET_TX_DESC_TX_RATE_8703B(pbuf, pHalData->INIDATA_RATE[pattrib->mac_id] & 0x7F);
}
// modify data rate by iwpriv
if (padapter->fix_rate != 0xFF) {
SET_TX_DESC_USE_RATE_8703B(pbuf, 1);
if (padapter->fix_rate & BIT(7)) {
SET_TX_DESC_DATA_SHORT_8703B(pbuf, 1);
}
SET_TX_DESC_TX_RATE_8703B(pbuf, padapter->fix_rate & 0x7F);
if (!padapter->data_fb) {
SET_TX_DESC_DISABLE_FB_8703B(pbuf, 1);
}
}
if (pattrib->ldpc) {
SET_TX_DESC_DATA_LDPC_8703B(pbuf, 1);
}
if (pattrib->stbc) {
SET_TX_DESC_DATA_STBC_8703B(pbuf, 1);
}
#ifdef CONFIG_CMCC_TEST
SET_TX_DESC_DATA_SHORT_8703B(pbuf, 1); /* use cck short premble */
#endif
}
else
{
// EAP data packet and ARP packet.
// Use the 1M data rate to send the EAP/ARP packet.
// This will maybe make the handshake smooth.
SET_TX_DESC_AGG_BREAK_8703B(pbuf, 1);
SET_TX_DESC_USE_RATE_8703B(pbuf, 1);
if (pmlmeinfo->preamble_mode == PREAMBLE_SHORT) {
SET_TX_DESC_DATA_SHORT_8703B(pbuf, 1);
}
SET_TX_DESC_TX_RATE_8703B(pbuf, MRateToHwRate(pmlmeext->tx_rate));
DBG_8192C(FUNC_ADPT_FMT ": SP Packet(0x%04X) rate=0x%x\n",
FUNC_ADPT_ARG(padapter), pattrib->ether_type, MRateToHwRate(pmlmeext->tx_rate));
}
#if defined(CONFIG_USB_TX_AGGREGATION) || defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
SET_TX_DESC_USB_TXAGG_NUM_8703B(pbuf, pxmitframe->agg_num);
#endif
#ifdef CONFIG_TDLS
#ifdef CONFIG_XMIT_ACK
/* CCX-TXRPT ack for xmit mgmt frames. */
if (pxmitframe->ack_report) {
#ifdef DBG_CCX
DBG_8192C("%s set spe_rpt\n", __func__);
#endif
SET_TX_DESC_SPE_RPT_8703B(pbuf, 1);
SET_TX_DESC_SW_DEFINE_8703B(pbuf, (u8)(GET_PRIMARY_ADAPTER(padapter)->xmitpriv.seq_no));
}
#endif /* CONFIG_XMIT_ACK */
#endif
}
else if (pxmitframe->frame_tag == MGNT_FRAMETAG)
{
// RT_TRACE(_module_hal_xmit_c_, _drv_notice_, ("%s: MGNT_FRAMETAG\n", __FUNCTION__));
SET_TX_DESC_MACID_8703B(pbuf, pattrib->mac_id);
SET_TX_DESC_QUEUE_SEL_8703B(pbuf, pattrib->qsel);
SET_TX_DESC_RATE_ID_8703B(pbuf, pattrib->raid);
SET_TX_DESC_SEQ_8703B(pbuf, pattrib->seqnum);
SET_TX_DESC_USE_RATE_8703B(pbuf, 1);
SET_TX_DESC_MBSSID_8703B(pbuf, pattrib->mbssid & 0xF);
SET_TX_DESC_RETRY_LIMIT_ENABLE_8703B(pbuf, 1);
if (pattrib->retry_ctrl == _TRUE) {
SET_TX_DESC_DATA_RETRY_LIMIT_8703B(pbuf, 6);
} else {
SET_TX_DESC_DATA_RETRY_LIMIT_8703B(pbuf, 12);
}
#ifdef CONFIG_INTEL_PROXIM
if((padapter->proximity.proxim_on==_TRUE)&&(pattrib->intel_proxim==_TRUE)){
DBG_871X("\n %s pattrib->rate=%d\n",__FUNCTION__,pattrib->rate);
SET_TX_DESC_TX_RATE_8703B(pbuf, pattrib->rate);
}
else
#endif
{
SET_TX_DESC_TX_RATE_8703B(pbuf, MRateToHwRate(pmlmeext->tx_rate));
}
#ifdef CONFIG_XMIT_ACK
// CCX-TXRPT ack for xmit mgmt frames.
if (pxmitframe->ack_report) {
#ifdef DBG_CCX
DBG_8192C("%s set spe_rpt\n", __FUNCTION__);
#endif
SET_TX_DESC_SPE_RPT_8703B(pbuf, 1);
SET_TX_DESC_SW_DEFINE_8703B(pbuf, (u8)(GET_PRIMARY_ADAPTER(padapter)->xmitpriv.seq_no));
}
#endif // CONFIG_XMIT_ACK
}
else if (pxmitframe->frame_tag == TXAGG_FRAMETAG)
{
RT_TRACE(_module_hal_xmit_c_, _drv_warning_, ("%s: TXAGG_FRAMETAG\n", __FUNCTION__));
}
#ifdef CONFIG_MP_INCLUDED
else if (pxmitframe->frame_tag == MP_FRAMETAG)
{
RT_TRACE(_module_hal_xmit_c_, _drv_notice_, ("%s: MP_FRAMETAG\n", __FUNCTION__));
fill_txdesc_for_mp(padapter, pbuf);
}
#endif
else
{
RT_TRACE(_module_hal_xmit_c_, _drv_warning_, ("%s: frame_tag=0x%x\n", __FUNCTION__, pxmitframe->frame_tag));
SET_TX_DESC_MACID_8703B(pbuf, pattrib->mac_id);
SET_TX_DESC_RATE_ID_8703B(pbuf, pattrib->raid);
SET_TX_DESC_QUEUE_SEL_8703B(pbuf, pattrib->qsel);
SET_TX_DESC_SEQ_8703B(pbuf, pattrib->seqnum);
SET_TX_DESC_USE_RATE_8703B(pbuf, 1);
SET_TX_DESC_TX_RATE_8703B(pbuf, MRateToHwRate(pmlmeext->tx_rate));
}
SET_TX_DESC_PKT_SIZE_8703B(pbuf, pattrib->last_txcmdsz);
{
u8 pkt_offset, offset;
pkt_offset = 0;
offset = TXDESC_SIZE;
#ifdef CONFIG_USB_HCI
pkt_offset = pxmitframe->pkt_offset;
offset += (pxmitframe->pkt_offset >> 3);
#endif // CONFIG_USB_HCI
#ifdef CONFIG_TX_EARLY_MODE
if (pxmitframe->frame_tag == DATA_FRAMETAG) {
pkt_offset = 1;
offset += EARLY_MODE_INFO_SIZE;
}
#endif // CONFIG_TX_EARLY_MODE
SET_TX_DESC_PKT_OFFSET_8703B(pbuf, pkt_offset);
SET_TX_DESC_OFFSET_8703B(pbuf, offset);
}
if (bmcst) {
SET_TX_DESC_BMC_8703B(pbuf, 1);
}
// 2009.11.05. tynli_test. Suggested by SD4 Filen for FW LPS.
// (1) The sequence number of each non-Qos frame / broadcast / multicast /
// mgnt frame should be controled by Hw because Fw will also send null data
// which we cannot control when Fw LPS enable.
// --> default enable non-Qos data sequense number. 2010.06.23. by tynli.
// (2) Enable HW SEQ control for beacon packet, because we use Hw beacon.
// (3) Use HW Qos SEQ to control the seq num of Ext port non-Qos packets.
// 2010.06.23. Added by tynli.
if (!pattrib->qos_en) {
SET_TX_DESC_HWSEQ_EN_8703B(pbuf, 1);
}
}
/*
* Description:
*
* Parameters:
* pxmitframe xmitframe
* pbuf where to fill tx desc
*/
void rtl8703b_update_txdesc(struct xmit_frame *pxmitframe, u8 *pbuf)
{
PADAPTER padapter = pxmitframe->padapter;
rtl8703b_fill_default_txdesc(pxmitframe, pbuf);
#ifdef CONFIG_ANTENNA_DIVERSITY
ODM_SetTxAntByTxInfo(&GET_HAL_DATA(padapter)->odmpriv, pbuf, pxmitframe->attrib.mac_id);
#endif // CONFIG_ANTENNA_DIVERSITY
#if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
rtl8703b_cal_txdesc_chksum((struct tx_desc*)pbuf);
#endif
}
#ifdef CONFIG_TSF_RESET_OFFLOAD
int reset_tsf(PADAPTER Adapter, u8 reset_port )
{
u8 reset_cnt_before = 0, reset_cnt_after = 0, loop_cnt = 0;
u32 reg_reset_tsf_cnt = (IFACE_PORT0==reset_port) ?
REG_FW_RESET_TSF_CNT_0:REG_FW_RESET_TSF_CNT_1;
rtw_scan_abort(Adapter->pbuddy_adapter); /* site survey will cause reset_tsf fail */
reset_cnt_after = reset_cnt_before = rtw_read8(Adapter,reg_reset_tsf_cnt);
rtl8703b_reset_tsf(Adapter, reset_port);
while ((reset_cnt_after == reset_cnt_before ) && (loop_cnt < 10)) {
rtw_msleep_os(100);
loop_cnt++;
reset_cnt_after = rtw_read8(Adapter, reg_reset_tsf_cnt);
}
return(loop_cnt >= 10) ? _FAIL : _TRUE;
}
#endif // CONFIG_TSF_RESET_OFFLOAD
static void hw_var_set_monitor(PADAPTER Adapter, u8 variable, u8 *val)
{
u32 value_rcr, rcr_bits;
u16 value_rxfltmap2;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct mlme_priv *pmlmepriv = &(Adapter->mlmepriv);
if (*((u8 *)val) == _HW_STATE_MONITOR_) {
/* Leave IPS */
rtw_pm_set_ips(Adapter, IPS_NONE);
LeaveAllPowerSaveMode(Adapter);
/* Receive all type */
rcr_bits = RCR_AAP | RCR_APM | RCR_AM | RCR_AB | RCR_APWRMGT | RCR_ADF | RCR_ACF | RCR_AMF | RCR_APP_PHYST_RXFF;
/* Append FCS */
rcr_bits |= RCR_APPFCS;
#if 0
/*
CRC and ICV packet will drop in recvbuf2recvframe()
We no turn on it.
*/
rcr_bits |= (RCR_ACRC32 | RCR_AICV);
#endif
/* Receive all data frames */
value_rxfltmap2 = 0xFFFF;
value_rcr = rcr_bits;
rtw_write32(Adapter, REG_RCR, value_rcr);
rtw_write16(Adapter, REG_RXFLTMAP2, value_rxfltmap2);
#if 0
/* tx pause */
rtw_write8(padapter, REG_TXPAUSE, 0xFF);
#endif
} else {
/* do nothing */
}
}
static void hw_var_set_opmode(PADAPTER padapter, u8 variable, u8* val)
{
u8 val8;
u8 mode = *((u8 *)val);
static u8 isMonitor = _FALSE;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
if (isMonitor == _TRUE) {
/* reset RCR */
rtw_write32(padapter, REG_RCR, pHalData->ReceiveConfig);
isMonitor = _FALSE;
}
if (mode == _HW_STATE_MONITOR_) {
isMonitor = _TRUE;
/* set net_type */
Set_MSR(padapter, _HW_STATE_NOLINK_);
hw_var_set_monitor(padapter, variable, val);
return;
}
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->iface_type == IFACE_PORT1)
{
// disable Port1 TSF update
val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
val8 |= DIS_TSF_UDT;
rtw_write8(padapter, REG_BCN_CTRL_1, val8);
Set_MSR(padapter, mode);
DBG_871X("#### %s()-%d iface_type(%d) mode=%d ####\n",
__FUNCTION__, __LINE__, padapter->iface_type, mode);
if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_))
{
if (!check_buddy_mlmeinfo_state(padapter, WIFI_FW_AP_STATE))
{
StopTxBeacon(padapter);
#ifdef CONFIG_PCI_HCI
UpdateInterruptMask8703BE(padapter, 0, 0, RT_BCN_INT_MASKS, 0);
#else // !CONFIG_PCI_HCI
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
rtw_write8(padapter, REG_DRVERLYINT, 0x05);//restore early int time to 5ms
UpdateInterruptMask8703BU(padapter, _TRUE, 0, IMR_BCNDMAINT0_8703B);
#endif // CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8703BU(padapter, _TRUE ,0, (IMR_TXBCN0ERR_8703B|IMR_TXBCN0OK_8703B));
#endif // CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#endif // CONFIG_INTERRUPT_BASED_TXBCN
#endif // !CONFIG_PCI_HCI
}
// disable atim wnd and disable beacon function
rtw_write8(padapter, REG_BCN_CTRL_1, DIS_TSF_UDT|DIS_ATIM);
}
else if ((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/)
{
ResumeTxBeacon(padapter);
rtw_write8(padapter, REG_BCN_CTRL_1, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_BCNQ_SUB);
}
else if (mode == _HW_STATE_AP_)
{
#ifdef CONFIG_PCI_HCI
UpdateInterruptMask8703BE(padapter, RT_BCN_INT_MASKS, 0, 0, 0);
#else // !CONFIG_PCI_HCI
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
UpdateInterruptMask8703BU(padapter, _TRUE, IMR_BCNDMAINT0_8703B, 0);
#endif // CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8703BU(padapter, _TRUE, (IMR_TXBCN0ERR_8703B|IMR_TXBCN0OK_8703B), 0);
#endif // CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#endif // CONFIG_INTERRUPT_BASED_TXBCN
#endif // !CONFIG_PCI_HCI
ResumeTxBeacon(padapter);
rtw_write8(padapter, REG_BCN_CTRL_1, DIS_TSF_UDT|DIS_BCNQ_SUB);
// Set RCR
//rtw_write32(padapter, REG_RCR, 0x70002a8e);//CBSSID_DATA must set to 0
//rtw_write32(padapter, REG_RCR, 0x7000228e);//CBSSID_DATA must set to 0
rtw_write32(padapter, REG_RCR, 0x7000208e);//CBSSID_DATA must set to 0,reject ICV_ERR packet
// enable to rx data frame
rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
// enable to rx ps-poll
rtw_write16(padapter, REG_RXFLTMAP1, 0x0400);
// Beacon Control related register for first time
rtw_write8(padapter, REG_BCNDMATIM, 0x02); // 2ms
//rtw_write8(padapter, REG_BCN_MAX_ERR, 0xFF);
rtw_write8(padapter, REG_ATIMWND_1, 0x0a); // 10ms for port1
rtw_write16(padapter, REG_BCNTCFG, 0x00);
rtw_write16(padapter, REG_TBTT_PROHIBIT, 0xff04);
rtw_write16(padapter, REG_TSFTR_SYN_OFFSET, 0x7fff);// +32767 (~32ms)
// reset TSF2
rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(1));
// enable BCN1 Function for if2
// don't enable update TSF1 for if2 (due to TSF update when beacon/probe rsp are received)
rtw_write8(padapter, REG_BCN_CTRL_1, (DIS_TSF_UDT|EN_BCN_FUNCTION | EN_TXBCN_RPT|DIS_BCNQ_SUB));
//SW_BCN_SEL - Port1
//rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2)|BIT4);
rtw_hal_set_hwreg(padapter, HW_VAR_DL_BCN_SEL, NULL);
// select BCN on port 1
rtw_write8(padapter, REG_CCK_CHECK_8703B,
(rtw_read8(padapter, REG_CCK_CHECK_8703B)|BIT_BCN_PORT_SEL));
if (check_buddy_fwstate(padapter, WIFI_FW_NULL_STATE))
{
val8 = rtw_read8(padapter, REG_BCN_CTRL);
val8 &= ~EN_BCN_FUNCTION;
rtw_write8(padapter, REG_BCN_CTRL, val8);
}
//BCN1 TSF will sync to BCN0 TSF with offset(0x518) if if1_sta linked
//rtw_write8(padapter, REG_BCN_CTRL_1, rtw_read8(padapter, REG_BCN_CTRL_1)|BIT(5));
//rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(3));
//dis BCN0 ATIM WND if if1 is station
rtw_write8(padapter, REG_BCN_CTRL, rtw_read8(padapter, REG_BCN_CTRL)|DIS_ATIM);
#ifdef CONFIG_TSF_RESET_OFFLOAD
// Reset TSF for STA+AP concurrent mode
if (check_buddy_fwstate(padapter, (WIFI_STATION_STATE|WIFI_ASOC_STATE)))
{
if (reset_tsf(padapter, IFACE_PORT1) == _FALSE)
DBG_871X("ERROR! %s()-%d: Reset port1 TSF fail\n",
__FUNCTION__, __LINE__);
}
#endif // CONFIG_TSF_RESET_OFFLOAD
}
}
else //else for port0
#endif // CONFIG_CONCURRENT_MODE
{
// disable Port0 TSF update
val8 = rtw_read8(padapter, REG_BCN_CTRL);
val8 |= DIS_TSF_UDT;
rtw_write8(padapter, REG_BCN_CTRL, val8);
// set net_type
Set_MSR(padapter, mode);
DBG_871X("#### %s() -%d iface_type(0) mode = %d ####\n", __FUNCTION__, __LINE__, mode);
if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_))
{
#ifdef CONFIG_CONCURRENT_MODE
if (!check_buddy_mlmeinfo_state(padapter, WIFI_FW_AP_STATE))
#endif // CONFIG_CONCURRENT_MODE
{
StopTxBeacon(padapter);
#ifdef CONFIG_PCI_HCI
UpdateInterruptMask8703BE(padapter, 0, 0, RT_BCN_INT_MASKS, 0);
#else // !CONFIG_PCI_HCI
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
rtw_write8(padapter, REG_DRVERLYINT, 0x05); // restore early int time to 5ms
UpdateInterruptMask8812AU(padapter, _TRUE, 0, IMR_BCNDMAINT0_8703B);
#endif // CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8812AU(padapter,_TRUE ,0, (IMR_TXBCN0ERR_8703B|IMR_TXBCN0OK_8703B));
#endif // CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#endif // CONFIG_INTERRUPT_BASED_TXBCN
#endif // !CONFIG_PCI_HCI
}
// disable atim wnd
rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_ATIM);
//rtw_write8(padapter,REG_BCN_CTRL, 0x18);
}
else if ((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/)
{
ResumeTxBeacon(padapter);
rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_BCNQ_SUB);
}
else if (mode == _HW_STATE_AP_)
{
#ifdef CONFIG_PCI_HCI
UpdateInterruptMask8703BE( padapter, RT_BCN_INT_MASKS, 0, 0, 0);
#else // !CONFIG_PCI_HCI
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
UpdateInterruptMask8703BU(padapter, _TRUE ,IMR_BCNDMAINT0_8703B, 0);
#endif // CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8703BU(padapter,_TRUE ,(IMR_TXBCN0ERR_8703B|IMR_TXBCN0OK_8703B), 0);
#endif // CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#endif // CONFIG_INTERRUPT_BASED_TXBCN
#endif
ResumeTxBeacon(padapter);
rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|DIS_BCNQ_SUB);
//Set RCR
//rtw_write32(padapter, REG_RCR, 0x70002a8e);//CBSSID_DATA must set to 0
//rtw_write32(padapter, REG_RCR, 0x7000228e);//CBSSID_DATA must set to 0
rtw_write32(padapter, REG_RCR, 0x7000208e);//CBSSID_DATA must set to 0,reject ICV_ERR packet
//enable to rx data frame
rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
//enable to rx ps-poll
rtw_write16(padapter, REG_RXFLTMAP1, 0x0400);
//Beacon Control related register for first time
rtw_write8(padapter, REG_BCNDMATIM, 0x02); // 2ms
//rtw_write8(padapter, REG_BCN_MAX_ERR, 0xFF);
rtw_write8(padapter, REG_ATIMWND, 0x0a); // 10ms
rtw_write16(padapter, REG_BCNTCFG, 0x00);
rtw_write16(padapter, REG_TBTT_PROHIBIT, 0xff04);
rtw_write16(padapter, REG_TSFTR_SYN_OFFSET, 0x7fff);// +32767 (~32ms)
//reset TSF
rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
//enable BCN0 Function for if1
//don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received)
rtw_write8(padapter, REG_BCN_CTRL, (DIS_TSF_UDT|EN_BCN_FUNCTION|EN_TXBCN_RPT|DIS_BCNQ_SUB));
//SW_BCN_SEL - Port0
//rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) & ~BIT4);
rtw_hal_set_hwreg(padapter, HW_VAR_DL_BCN_SEL, NULL);
// select BCN on port 0
rtw_write8(padapter, REG_CCK_CHECK_8703B,
(rtw_read8(padapter, REG_CCK_CHECK_8703B)& ~BIT_BCN_PORT_SEL));
#ifdef CONFIG_CONCURRENT_MODE
if (check_buddy_fwstate(padapter, WIFI_FW_NULL_STATE))
{
val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
val8 &= ~EN_BCN_FUNCTION;
rtw_write8(padapter, REG_BCN_CTRL_1, val8);
}
#endif // CONFIG_CONCURRENT_MODE
// dis BCN1 ATIM WND if if2 is station
val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
val8 |= DIS_ATIM;
rtw_write8(padapter, REG_BCN_CTRL_1, val8);
#ifdef CONFIG_TSF_RESET_OFFLOAD
// Reset TSF for STA+AP concurrent mode
if (check_buddy_fwstate(padapter, (WIFI_STATION_STATE|WIFI_ASOC_STATE)))
{
if (reset_tsf(padapter, IFACE_PORT0) == _FALSE)
DBG_871X("ERROR! %s()-%d: Reset port0 TSF fail\n",
__FUNCTION__, __LINE__);
}
#endif // CONFIG_TSF_RESET_OFFLOAD
}
}
}
static void hw_var_set_macaddr(PADAPTER padapter, u8 variable, u8 *val)
{
u8 idx = 0;
u32 reg_macid;
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->iface_type == IFACE_PORT1)
{
reg_macid = REG_MACID1;
}
else
#endif
{
reg_macid = REG_MACID;
}
for (idx = 0 ; idx < 6; idx++)
{
rtw_write8(GET_PRIMARY_ADAPTER(padapter), (reg_macid+idx), val[idx]);
}
}
static void hw_var_set_bssid(PADAPTER padapter, u8 variable, u8 *val)
{
u8 idx = 0;
u32 reg_bssid;
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->iface_type == IFACE_PORT1)
{
reg_bssid = REG_BSSID1;
}
else
#endif
{
reg_bssid = REG_BSSID;
}
for (idx = 0 ; idx < 6; idx++)
{
rtw_write8(padapter, (reg_bssid+idx), val[idx]);
}
}
static void hw_var_set_bcn_func(PADAPTER padapter, u8 variable, u8 *val)
{
u32 bcn_ctrl_reg;
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->iface_type == IFACE_PORT1)
{
bcn_ctrl_reg = REG_BCN_CTRL_1;
}
else
#endif
{
bcn_ctrl_reg = REG_BCN_CTRL;
}
if (*(u8*)val)
{
rtw_write8(padapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
}
else
{
u8 val8;
val8 = rtw_read8(padapter, bcn_ctrl_reg);
val8 &= ~(EN_BCN_FUNCTION | EN_TXBCN_RPT);
#ifdef CONFIG_BT_COEXIST
// Always enable port0 beacon function for PSTDMA
if (REG_BCN_CTRL == bcn_ctrl_reg)
val8 |= EN_BCN_FUNCTION;
#endif
rtw_write8(padapter, bcn_ctrl_reg, val8);
}
}
static void hw_var_set_correct_tsf(PADAPTER padapter, u8 variable, u8* val)
{
u8 val8;
u64 tsf;
struct mlme_ext_priv *pmlmeext;
struct mlme_ext_info *pmlmeinfo;
pmlmeext = &padapter->mlmeextpriv;
pmlmeinfo = &pmlmeext->mlmext_info;
tsf = pmlmeext->TSFValue - rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024)) -1024; //us
if (((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
{
StopTxBeacon(padapter);
}
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->iface_type == IFACE_PORT1)
{
// disable related TSF function
val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
val8 &= ~EN_BCN_FUNCTION;
rtw_write8(padapter, REG_BCN_CTRL_1, val8);
rtw_write32(padapter, REG_TSFTR1, tsf);
rtw_write32(padapter, REG_TSFTR1+4, tsf>>32);
// enable related TSF function
val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
val8 |= EN_BCN_FUNCTION;
rtw_write8(padapter, REG_BCN_CTRL_1, val8);
// Update buddy port's TSF if it is SoftAP for beacon TX issue!
if ((pmlmeinfo->state&0x03) == WIFI_FW_STATION_STATE
&& check_buddy_fwstate(padapter, WIFI_AP_STATE)
)
{
// disable related TSF function
val8 = rtw_read8(padapter, REG_BCN_CTRL);
val8 &= ~EN_BCN_FUNCTION;
rtw_write8(padapter, REG_BCN_CTRL, val8);
rtw_write32(padapter, REG_TSFTR, tsf);
rtw_write32(padapter, REG_TSFTR+4, tsf>>32);
// enable related TSF function
val8 = rtw_read8(padapter, REG_BCN_CTRL);
val8 |= EN_BCN_FUNCTION;
rtw_write8(padapter, REG_BCN_CTRL, val8);
#ifdef CONFIG_TSF_RESET_OFFLOAD
// Update buddy port's TSF(TBTT) if it is SoftAP for beacon TX issue!
if (reset_tsf(padapter, IFACE_PORT0) == _FALSE)
DBG_871X("ERROR! %s()-%d: Reset port0 TSF fail\n",
__FUNCTION__, __LINE__);
#endif // CONFIG_TSF_RESET_OFFLOAD
}
}
else
#endif // CONFIG_CONCURRENT_MODE
{
// disable related TSF function
val8 = rtw_read8(padapter, REG_BCN_CTRL);
val8 &= ~EN_BCN_FUNCTION;
rtw_write8(padapter, REG_BCN_CTRL, val8);
rtw_write32(padapter, REG_TSFTR, tsf);
rtw_write32(padapter, REG_TSFTR+4, tsf>>32);
// enable related TSF function
val8 = rtw_read8(padapter, REG_BCN_CTRL);
val8 |= EN_BCN_FUNCTION;
rtw_write8(padapter, REG_BCN_CTRL, val8);
#ifdef CONFIG_CONCURRENT_MODE
// Update buddy port's TSF if it is SoftAP for beacon TX issue!
if ((pmlmeinfo->state&0x03) == WIFI_FW_STATION_STATE
&& check_buddy_fwstate(padapter, WIFI_AP_STATE))
{
// disable related TSF function
val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
val8 &= ~EN_BCN_FUNCTION;
rtw_write8(padapter, REG_BCN_CTRL_1, val8);
rtw_write32(padapter, REG_TSFTR1, tsf);
rtw_write32(padapter, REG_TSFTR1+4, tsf>>32);
// enable related TSF function
val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
val8 |= EN_BCN_FUNCTION;
rtw_write8(padapter, REG_BCN_CTRL_1, val8);
#ifdef CONFIG_TSF_RESET_OFFLOAD
// Update buddy port's TSF if it is SoftAP for beacon TX issue!
if (reset_tsf(padapter, IFACE_PORT1) == _FALSE)
{
DBG_871X("ERROR! %s()-%d: Reset port1 TSF fail\n",
__FUNCTION__, __LINE__);
}
#endif // CONFIG_TSF_RESET_OFFLOAD
}
#endif // CONFIG_CONCURRENT_MODE
}
if (((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE)
|| ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
{
ResumeTxBeacon(padapter);
}
}
static void hw_var_set_mlme_disconnect(PADAPTER padapter, u8 variable, u8 *val)
{
u8 val8;
#ifdef CONFIG_CONCURRENT_MODE
if (check_buddy_mlmeinfo_state(padapter, _HW_STATE_NOLINK_))
#endif
{
// Set RCR to not to receive data frame when NO LINK state
//rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR) & ~RCR_ADF);
// reject all data frames
rtw_write16(padapter, REG_RXFLTMAP2, 0);
}
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->iface_type == IFACE_PORT1)
{
// reset TSF1
rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(1));
// disable update TSF1
val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
val8 |= DIS_TSF_UDT;
rtw_write8(padapter, REG_BCN_CTRL_1, val8);
// disable Port1's beacon function
val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
val8 &= ~EN_BCN_FUNCTION;
rtw_write8(padapter, REG_BCN_CTRL_1, val8);
}
else
#endif
{
// reset TSF
rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
// disable update TSF
val8 = rtw_read8(padapter, REG_BCN_CTRL);
val8 |= DIS_TSF_UDT;
rtw_write8(padapter, REG_BCN_CTRL, val8);
}
}
static void hw_var_set_mlme_sitesurvey(PADAPTER padapter, u8 variable, u8* val)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
u32 value_rcr, rcr_clear_bit, reg_bcn_ctl;
u16 value_rxfltmap2;
u8 val8;
PHAL_DATA_TYPE pHalData;
struct mlme_priv *pmlmepriv;
u8 ap_num;
rtw_dev_iface_status(padapter, NULL, NULL, NULL, &ap_num, NULL);
pHalData = GET_HAL_DATA(padapter);
pmlmepriv = &padapter->mlmepriv;
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->iface_type == IFACE_PORT1)
reg_bcn_ctl = REG_BCN_CTRL_1;
else
#endif
reg_bcn_ctl = REG_BCN_CTRL;
#ifdef CONFIG_FIND_BEST_CHANNEL
rcr_clear_bit = (RCR_CBSSID_BCN | RCR_CBSSID_DATA);
/* Receive all data frames */
value_rxfltmap2 = 0xFFFF;
#else // CONFIG_FIND_BEST_CHANNEL
rcr_clear_bit = RCR_CBSSID_BCN;
// config RCR to receive different BSSID & not to receive data frame
value_rxfltmap2 = 0;
#endif // CONFIG_FIND_BEST_CHANNEL
if ((check_fwstate(pmlmepriv, WIFI_AP_STATE) == _TRUE)
#ifdef CONFIG_CONCURRENT_MODE
|| (check_buddy_fwstate(padapter, WIFI_AP_STATE) == _TRUE)
#endif
)
{
rcr_clear_bit = RCR_CBSSID_BCN;
}
#ifdef CONFIG_TDLS
// TDLS will clear RCR_CBSSID_DATA bit for connection.
else if (padapter->tdlsinfo.link_established == _TRUE)
{
rcr_clear_bit = RCR_CBSSID_BCN;
}
#endif // CONFIG_TDLS
value_rcr = rtw_read32(padapter, REG_RCR);
if (*((u8*)val))
{
// under sitesurvey
value_rcr &= ~(rcr_clear_bit);
rtw_write32(padapter, REG_RCR, value_rcr);
rtw_write16(padapter, REG_RXFLTMAP2, value_rxfltmap2);
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE))
{
// disable update TSF
val8 = rtw_read8(padapter, reg_bcn_ctl);
val8 |= DIS_TSF_UDT;
rtw_write8(padapter, reg_bcn_ctl, val8);
}
// Save orignal RRSR setting.
pHalData->RegRRSR = rtw_read16(padapter, REG_RRSR);
if (ap_num)
StopTxBeacon(padapter);
}
else
{
// sitesurvey done
if (check_fwstate(pmlmepriv, (_FW_LINKED|WIFI_AP_STATE))
#ifdef CONFIG_CONCURRENT_MODE
|| check_buddy_fwstate(padapter, (_FW_LINKED|WIFI_AP_STATE))
#endif
)
{
// enable to rx data frame
rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
}
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE))
{
// enable update TSF
val8 = rtw_read8(padapter, reg_bcn_ctl);
val8 &= ~DIS_TSF_UDT;
rtw_write8(padapter, reg_bcn_ctl, val8);
}
value_rcr |= rcr_clear_bit;
rtw_write32(padapter, REG_RCR, value_rcr);
// Restore orignal RRSR setting.
rtw_write16(padapter, REG_RRSR, pHalData->RegRRSR);
if (ap_num) {
int i;
_adapter *iface;
ResumeTxBeacon(padapter);
for (i = 0; i < dvobj->iface_nums; i++) {
iface = dvobj->padapters[i];
if (!iface)
continue;
if (check_fwstate(&iface->mlmepriv, WIFI_AP_STATE) == _TRUE
&& check_fwstate(&iface->mlmepriv, WIFI_ASOC_STATE) == _TRUE
) {
iface->mlmepriv.update_bcn = _TRUE;
#ifndef CONFIG_INTERRUPT_BASED_TXBCN
#if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
tx_beacon_hdl(iface, NULL);
#endif
#endif
}
}
}
}
}
static void hw_var_set_mlme_join(PADAPTER padapter, u8 variable, u8 *val)
{
u8 val8;
u16 val16;
u32 val32;
u8 RetryLimit;
u8 type;
PHAL_DATA_TYPE pHalData;
struct mlme_priv *pmlmepriv;
RetryLimit = 0x30;
type = *(u8*)val;
pHalData = GET_HAL_DATA(padapter);
pmlmepriv = &padapter->mlmepriv;
#ifdef CONFIG_CONCURRENT_MODE
if (type == 0)
{
// prepare to join
if (check_buddy_mlmeinfo_state(padapter, WIFI_FW_AP_STATE) &&
check_buddy_fwstate(padapter, _FW_LINKED))
{
StopTxBeacon(padapter);
}
// enable to rx data frame.Accept all data frame
rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
if (check_buddy_mlmeinfo_state(padapter, WIFI_FW_AP_STATE))
{
val32 = rtw_read32(padapter, REG_RCR);
val32 |= RCR_CBSSID_BCN;
rtw_write32(padapter, REG_RCR, val32);
}
else
{
val32 = rtw_read32(padapter, REG_RCR);
val32 |= RCR_CBSSID_DATA | RCR_CBSSID_BCN;
rtw_write32(padapter, REG_RCR, val32);
}
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == _TRUE)
{
RetryLimit = (pHalData->CustomerID == RT_CID_CCX) ? 7 : 48;
}
else // Ad-hoc Mode
{
RetryLimit = 0x7;
}
}
else if (type == 1)
{
// joinbss_event call back when join res < 0
if (check_buddy_mlmeinfo_state(padapter, _HW_STATE_NOLINK_))
rtw_write16(padapter, REG_RXFLTMAP2, 0x00);
if (check_buddy_mlmeinfo_state(padapter, WIFI_FW_AP_STATE) &&
check_buddy_fwstate(padapter, _FW_LINKED))
{
ResumeTxBeacon(padapter);
// reset TSF 1/2 after ResumeTxBeacon
rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(1)|BIT(0));
}
}
else if (type == 2)
{
// sta add event call back
// enable update TSF
if (padapter->iface_type == IFACE_PORT1)
{
val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
val8 &= ~DIS_TSF_UDT;
rtw_write8(padapter, REG_BCN_CTRL_1, val8);
}
else
{
val8 = rtw_read8(padapter, REG_BCN_CTRL);
val8 &= ~DIS_TSF_UDT;
rtw_write8(padapter, REG_BCN_CTRL, val8);
}
if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
{
rtw_write8(padapter, 0x542 ,0x02);
RetryLimit = 0x7;
}
if (check_buddy_mlmeinfo_state(padapter, WIFI_FW_AP_STATE) &&
check_buddy_fwstate(padapter, _FW_LINKED))
{
ResumeTxBeacon(padapter);
// reset TSF 1/2 after ResumeTxBeacon
rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(1)|BIT(0));
}
}
val16 = (RetryLimit << RETRY_LIMIT_SHORT_SHIFT) | (RetryLimit << RETRY_LIMIT_LONG_SHIFT);
rtw_write16(padapter, REG_RL, val16);
#else // !CONFIG_CONCURRENT_MODE
if (type == 0) // prepare to join
{
//enable to rx data frame.Accept all data frame
//rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF);
rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
val32 = rtw_read32(padapter, REG_RCR);
if (padapter->in_cta_test)
val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);//| RCR_ADF
else
val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
rtw_write32(padapter, REG_RCR, val32);
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == _TRUE)
{
RetryLimit = (pHalData->CustomerID == RT_CID_CCX) ? 7 : 48;
}
else // Ad-hoc Mode
{
RetryLimit = 0x7;
}
}
else if (type == 1) //joinbss_event call back when join res < 0
{
rtw_write16(padapter, REG_RXFLTMAP2, 0x00);
}
else if (type == 2) //sta add event call back
{
//enable update TSF
val8 = rtw_read8(padapter, REG_BCN_CTRL);
val8 &= ~DIS_TSF_UDT;
rtw_write8(padapter, REG_BCN_CTRL, val8);
if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
{
RetryLimit = 0x7;
}
}
val16 = (RetryLimit << RETRY_LIMIT_SHORT_SHIFT) | (RetryLimit << RETRY_LIMIT_LONG_SHIFT);
rtw_write16(padapter, REG_RL, val16);
#endif // !CONFIG_CONCURRENT_MODE
}
void CCX_FwC2HTxRpt_8703b(PADAPTER padapter, u8 *pdata, u8 len)
{
u8 seq_no;
#define GET_8703B_C2H_TX_RPT_LIFE_TIME_OVER(_Header) LE_BITS_TO_1BYTE((_Header + 0), 6, 1)
#define GET_8703B_C2H_TX_RPT_RETRY_OVER(_Header) LE_BITS_TO_1BYTE((_Header + 0), 7, 1)
//DBG_871X("%s, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", __func__,
// *pdata, *(pdata+1), *(pdata+2), *(pdata+3), *(pdata+4), *(pdata+5), *(pdata+6), *(pdata+7));
seq_no = *(pdata+6);
#ifdef CONFIG_XMIT_ACK
if (GET_8703B_C2H_TX_RPT_RETRY_OVER(pdata) | GET_8703B_C2H_TX_RPT_LIFE_TIME_OVER(pdata)) {
rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
}
/*
else if(seq_no != padapter->xmitpriv.seq_no) {
DBG_871X("tx_seq_no=%d, rpt_seq_no=%d\n", padapter->xmitpriv.seq_no, seq_no);
rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
}
*/
else {
rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_SUCCESS);
}
#endif
}
s32 c2h_id_filter_ccx_8703b(u8 *buf)
{
struct c2h_evt_hdr_88xx *c2h_evt = (struct c2h_evt_hdr_88xx *)buf;
s32 ret = _FALSE;
if (c2h_evt->id == C2H_CCX_TX_RPT)
ret = _TRUE;
return ret;
}
s32 c2h_handler_8703b(PADAPTER padapter, u8 *buf)
{
struct c2h_evt_hdr_88xx *pC2hEvent = (struct c2h_evt_hdr_88xx *)buf;
PHAL_DATA_TYPE pHalData=GET_HAL_DATA(padapter);
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
s32 ret = _SUCCESS;
u8 index = 0;
if (pC2hEvent == NULL) {
DBG_8192C("%s(): pC2hEventis NULL\n",__FUNCTION__);
ret = _FAIL;
goto exit;
}
switch (pC2hEvent->id) {
case C2H_DBG:
RT_TRACE(_module_hal_init_c_, _drv_info_, ("c2h_handler_8703b: %s\n", pC2hEvent->payload));
break;
case C2H_CCX_TX_RPT:
/*CCX_FwC2HTxRpt(padapter, QueueID, pC2hEvent->payload); */
break;
#ifdef CONFIG_BT_COEXIST
case C2H_BT_INFO:
rtw_btcoex_BtInfoNotify(padapter, pC2hEvent->plen, pC2hEvent->payload);
break;
case C2H_BT_MP_INFO:
DBG_8192C("%s, C2H_BT_MP_INFO pC2hEvent->plen=%d\n", __func__, pC2hEvent->plen);
rtw_btcoex_BtMpRptNotify(padapter, pC2hEvent->plen, pC2hEvent->payload);
break;
case C2H_BT_SCOREBOARD_STATUS:
rtw_btcoex_ScoreBoardStatusNotify(padapter, pC2hEvent->plen, pC2hEvent->payload);
break;
#endif
default:
break;
}
// Clear event to notify FW we have read the command.
// Note:
// If this field isn't clear, the FW won't update the next command message.
// rtw_write8(padapter, REG_C2HEVT_CLEAR, C2H_EVT_HOST_CLOSE);
exit:
return ret;
}
static void process_c2h_event(PADAPTER padapter, PC2H_EVT_HDR pC2hEvent, u8 *c2hBuf)
{
u8 index = 0;
PHAL_DATA_TYPE pHalData=GET_HAL_DATA(padapter);
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
if (c2hBuf == NULL) {
DBG_8192C("%s c2hbuff is NULL\n",__FUNCTION__);
return;
}
switch (pC2hEvent->CmdID) {
case C2H_CCX_TX_RPT:
CCX_FwC2HTxRpt_8703b(padapter, c2hBuf, pC2hEvent->CmdLen);
break;
#ifdef CONFIG_BT_COEXIST
case C2H_BT_INFO:
rtw_btcoex_BtInfoNotify(padapter, pC2hEvent->CmdLen, c2hBuf);
break;
case C2H_BT_MP_INFO:
rtw_btcoex_BtMpRptNotify(padapter, pC2hEvent->CmdLen, c2hBuf);
break;
case C2H_BT_SCOREBOARD_STATUS:
rtw_btcoex_ScoreBoardStatusNotify(padapter, pC2hEvent->CmdLen, c2hBuf);
break;
#endif
#ifdef CONFIG_FW_C2H_DEBUG
case C2H_EXTEND:
Debug_FwC2H(padapter, c2hBuf, pC2hEvent->CmdLen);
break;
#endif /* CONFIG_FW_C2H_DEBUG */
default:
if (!(phydm_c2H_content_parsing(pDM_Odm, pC2hEvent->CmdID, pC2hEvent->CmdLen, c2hBuf)))
RT_TRACE(_module_hal_init_c_, _drv_info_, ("%s: [WARNING] unknown C2H(0x%02x)\n", __func__, c2hCmdId));
break;
}
#ifndef CONFIG_C2H_PACKET_EN
// Clear event to notify FW we have read the command.
// Note:
// If this field isn't clear, the FW won't update the next command message.
rtw_write8(padapter, REG_C2HEVT_CLEAR, C2H_EVT_HOST_CLOSE);
#endif
}
#ifdef CONFIG_C2H_PACKET_EN
static void C2HPacketHandler_8703B(PADAPTER padapter, u8 *pbuffer, u16 length)
{
C2H_EVT_HDR C2hEvent;
u8 *tmpBuf=NULL;
#ifdef CONFIG_WOWLAN
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
if(pwrpriv->wowlan_mode == _TRUE)
{
DBG_871X("%s(): return because wowolan_mode==TRUE! CMDID=%d\n", __func__, pbuffer[0]);
return;
}
#endif
C2hEvent.CmdID = pbuffer[0];
C2hEvent.CmdSeq = pbuffer[1];
C2hEvent.CmdLen = length - 2;
tmpBuf = pbuffer + 2;
//DBG_871X("%s C2hEvent.CmdID:%x C2hEvent.CmdLen:%x C2hEvent.CmdSeq:%x\n",
// __func__, C2hEvent.CmdID, C2hEvent.CmdLen, C2hEvent.CmdSeq);
RT_PRINT_DATA(_module_hal_init_c_, _drv_notice_, "C2HPacketHandler_8703B(): Command Content:\n", tmpBuf, C2hEvent.CmdLen);
process_c2h_event(padapter, &C2hEvent, tmpBuf);
//c2h_handler_8703b(padapter,&C2hEvent);
return;
}
void rtl8703b_c2h_packet_handler(PADAPTER padapter, u8 *pbuf, u16 length)
{
C2H_EVT_HDR C2hEvent;
u8 *pdata;
if (length == 0)
return;
C2hEvent.CmdID = pbuf[0];
C2hEvent.CmdSeq = pbuf[1];
C2hEvent.CmdLen = length - 2;
pdata = pbuf + 2;
DBG_8192C("%s: C2H, ID=%d seq=%d len=%d\n",
__FUNCTION__, C2hEvent.CmdID, C2hEvent.CmdSeq, C2hEvent.CmdLen);
switch (C2hEvent.CmdID) {
case C2H_CCX_TX_RPT:
#ifdef CONFIG_BT_COEXIST
case C2H_BT_MP_INFO:
#endif /* CONFIG_BT_COEXIST */
#ifdef CONFIG_FW_C2H_DEBUG
case C2H_EXTEND:
#endif // CONFIG_FW_C2H_DEBUG
process_c2h_event(padapter, &C2hEvent, pdata);
break;
default:
pdata = rtw_zmalloc(length);
if (pdata == NULL)
break;
_rtw_memcpy(pdata, pbuf, length);
if (rtw_c2h_packet_wk_cmd(padapter, pdata, length) == _FAIL)
rtw_mfree(pdata, length);
break;
}
}
#else // !CONFIG_C2H_PACKET_EN
//
//C2H event format:
// Field TRIGGER CONTENT CMD_SEQ CMD_LEN CMD_ID
// BITS [127:120] [119:16] [15:8] [7:4] [3:0]
//2009.10.08. by tynli.
static void C2HCommandHandler(PADAPTER padapter)
{
C2H_EVT_HDR C2hEvent;
#if defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
u8 *tmpBuf = NULL;
u8 index = 0;
u8 bCmdMsgReady = _FALSE;
u8 U1bTmp = 0;
// u8 QueueID = 0;
_rtw_memset(&C2hEvent, 0, sizeof(C2H_EVT_HDR));
C2hEvent.CmdID = rtw_read8(padapter, REG_C2HEVT_CMD_ID_8703B);
C2hEvent.CmdLen = rtw_read8(padapter, REG_C2HEVT_CMD_LEN_8703B);
C2hEvent.CmdSeq = rtw_read8(padapter, REG_C2HEVT_CMD_ID_8703B + 1);
RT_PRINT_DATA(_module_hal_init_c_, _drv_info_, "C2HCommandHandler(): ",
&C2hEvent , sizeof(C2hEvent));
U1bTmp = rtw_read8(padapter, REG_C2HEVT_CLEAR);
DBG_871X("%s C2hEvent.CmdID:%x C2hEvent.CmdLen:%x C2hEvent.CmdSeq:%x\n",
__func__, C2hEvent.CmdID, C2hEvent.CmdLen, C2hEvent.CmdSeq);
if (U1bTmp == C2H_EVT_HOST_CLOSE)
{
// Not ready.
return;
}
else if (U1bTmp == C2H_EVT_FW_CLOSE)
{
bCmdMsgReady = _TRUE;
}
else
{
// Not a valid value, reset the clear event.
goto exit;
}
if(C2hEvent.CmdLen == 0)
goto exit;
tmpBuf = rtw_zmalloc(C2hEvent.CmdLen);
if (tmpBuf == NULL)
goto exit;
// Read the content
for (index = 0; index < C2hEvent.CmdLen; index++)
{
tmpBuf[index] = rtw_read8(padapter, REG_C2HEVT_CMD_ID_8703B + 2 + index);
}
RT_PRINT_DATA(_module_hal_init_c_, _drv_notice_, "C2HCommandHandler(): Command Content:\n", tmpBuf, C2hEvent.CmdLen);
//process_c2h_event(padapter,&C2hEvent, tmpBuf);
c2h_handler_8703b(padapter,&C2hEvent);
if (tmpBuf)
rtw_mfree(tmpBuf, C2hEvent.CmdLen);
#endif // CONFIG_SDIO_HCI || CONFIG_GSPI_HCI
#ifdef CONFIG_USB_HCI
HAL_DATA_TYPE *pHalData=GET_HAL_DATA(padapter);
_rtw_memset(&C2hEvent, 0, sizeof(C2H_EVT_HDR));
C2hEvent.CmdID = pHalData->C2hArray[USB_C2H_CMDID_OFFSET] & 0xF;
C2hEvent.CmdLen = (pHalData->C2hArray[USB_C2H_CMDID_OFFSET] & 0xF0) >> 4;
C2hEvent.CmdSeq =pHalData->C2hArray[USB_C2H_SEQ_OFFSET];
c2h_handler_8703b(padapter,(u8 *)&C2hEvent);
//process_c2h_event(padapter,&C2hEvent,&pHalData->C2hArray[USB_C2H_EVENT_OFFSET]);
#endif // CONFIG_USB_HCI
//REG_C2HEVT_CLEAR have done in process_c2h_event
return;
exit:
rtw_write8(padapter, REG_C2HEVT_CLEAR, C2H_EVT_HOST_CLOSE);
return;
}
#endif // !CONFIG_C2H_PACKET_EN
void SetHwReg8703B(PADAPTER padapter, u8 variable, u8 *val)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
u8 val8;
u16 val16;
u32 val32;
_func_enter_;
switch (variable)
{
case HW_VAR_MEDIA_STATUS:
val8 = rtw_read8(padapter, MSR) & 0x0c;
val8 |= *val;
rtw_write8(padapter, MSR, val8);
break;
case HW_VAR_MEDIA_STATUS1:
val8 = rtw_read8(padapter, MSR) & 0x03;
val8 |= *val << 2;
rtw_write8(padapter, MSR, val8);
break;
case HW_VAR_SET_OPMODE:
hw_var_set_opmode(padapter, variable, val);
break;
case HW_VAR_MAC_ADDR:
hw_var_set_macaddr(padapter, variable, val);
break;
case HW_VAR_BSSID:
hw_var_set_bssid(padapter, variable, val);
break;
case HW_VAR_BASIC_RATE:
{
struct mlme_ext_info *mlmext_info = &padapter->mlmeextpriv.mlmext_info;
u16 input_b = 0, masked = 0, ioted = 0, BrateCfg = 0;
u16 rrsr_2g_force_mask = RRSR_CCK_RATES;
u16 rrsr_2g_allow_mask = (RRSR_24M|RRSR_12M|RRSR_6M|RRSR_CCK_RATES);
HalSetBrateCfg(padapter, val, &BrateCfg);
input_b = BrateCfg;
/* apply force and allow mask */
BrateCfg |= rrsr_2g_force_mask;
BrateCfg &= rrsr_2g_allow_mask;
masked = BrateCfg;
#ifdef CONFIG_CMCC_TEST
BrateCfg |= (RRSR_11M|RRSR_5_5M|RRSR_1M); /* use 11M to send ACK */
BrateCfg |= (RRSR_24M|RRSR_18M|RRSR_12M); //CMCC_OFDM_ACK 12/18/24M
#endif
/* IOT consideration */
if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) {
/* if peer is cisco and didn't use ofdm rate, we enable 6M ack */
if((BrateCfg & (RRSR_24M|RRSR_12M|RRSR_6M)) == 0)
BrateCfg |= RRSR_6M;
}
ioted = BrateCfg;
pHalData->BasicRateSet = BrateCfg;
DBG_8192C("HW_VAR_BASIC_RATE: %#x -> %#x -> %#x\n", input_b, masked, ioted);
// Set RRSR rate table.
rtw_write16(padapter, REG_RRSR, BrateCfg);
rtw_write8(padapter, REG_RRSR+2, rtw_read8(padapter, REG_RRSR+2)&0xf0);
}
break;
case HW_VAR_TXPAUSE:
rtw_write8(padapter, REG_TXPAUSE, *val);
break;
case HW_VAR_BCN_FUNC:
hw_var_set_bcn_func(padapter, variable, val);
break;
case HW_VAR_CORRECT_TSF:
hw_var_set_correct_tsf(padapter, variable, val);
break;
case HW_VAR_CHECK_BSSID:
{
u32 val32;
val32 = rtw_read32(padapter, REG_RCR);
if (*val)
val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
else
val32 &= ~(RCR_CBSSID_DATA|RCR_CBSSID_BCN);
rtw_write32(padapter, REG_RCR, val32);
}
break;
case HW_VAR_MLME_DISCONNECT:
hw_var_set_mlme_disconnect(padapter, variable, val);
break;
case HW_VAR_MLME_SITESURVEY:
hw_var_set_mlme_sitesurvey(padapter, variable, val);
#ifdef CONFIG_BT_COEXIST
rtw_btcoex_ScanNotify(padapter, *val?_TRUE:_FALSE);
#endif // CONFIG_BT_COEXIST
break;
case HW_VAR_MLME_JOIN:
hw_var_set_mlme_join(padapter, variable, val);
#ifdef CONFIG_BT_COEXIST
switch (*val)
{
case 0:
// prepare to join
rtw_btcoex_ConnectNotify(padapter, _TRUE);
break;
case 1:
// joinbss_event callback when join res < 0
rtw_btcoex_ConnectNotify(padapter, _FALSE);
break;
case 2:
// sta add event callback
// rtw_btcoex_MediaStatusNotify(padapter, RT_MEDIA_CONNECT);
break;
}
#endif // CONFIG_BT_COEXIST
break;
case HW_VAR_ON_RCR_AM:
val32 = rtw_read32(padapter, REG_RCR);
val32 |= RCR_AM;
rtw_write32(padapter, REG_RCR, val32);
DBG_8192C("%s, %d, RCR= %x\n", __FUNCTION__, __LINE__, rtw_read32(padapter, REG_RCR));
break;
case HW_VAR_OFF_RCR_AM:
val32 = rtw_read32(padapter, REG_RCR);
val32 &= ~RCR_AM;
rtw_write32(padapter, REG_RCR, val32);
DBG_8192C("%s, %d, RCR= %x\n", __FUNCTION__, __LINE__, rtw_read32(padapter, REG_RCR));
break;
case HW_VAR_BEACON_INTERVAL:
rtw_write16(padapter, REG_BCN_INTERVAL, *((u16*)val));
break;
case HW_VAR_SLOT_TIME:
rtw_write8(padapter, REG_SLOT, *val);
break;
case HW_VAR_RESP_SIFS:
#if 0
// SIFS for OFDM Data ACK
rtw_write8(padapter, REG_SIFS_CTX+1, val[0]);
// SIFS for OFDM consecutive tx like CTS data!
rtw_write8(padapter, REG_SIFS_TRX+1, val[1]);
rtw_write8(padapter, REG_SPEC_SIFS+1, val[0]);
rtw_write8(padapter, REG_MAC_SPEC_SIFS+1, val[0]);
// 20100719 Joseph: Revise SIFS setting due to Hardware register definition change.
rtw_write8(padapter, REG_R2T_SIFS+1, val[0]);
rtw_write8(padapter, REG_T2T_SIFS+1, val[0]);
#else
//SIFS_Timer = 0x0a0a0808;
//RESP_SIFS for CCK
rtw_write8(padapter, REG_RESP_SIFS_CCK, val[0]); // SIFS_T2T_CCK (0x08)
rtw_write8(padapter, REG_RESP_SIFS_CCK+1, val[1]); //SIFS_R2T_CCK(0x08)
//RESP_SIFS for OFDM
rtw_write8(padapter, REG_RESP_SIFS_OFDM, val[2]); //SIFS_T2T_OFDM (0x0a)
rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, val[3]); //SIFS_R2T_OFDM(0x0a)
#endif
break;
case HW_VAR_ACK_PREAMBLE:
{
u8 regTmp;
u8 bShortPreamble = *val;
// Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily)
//regTmp = (pHalData->nCur40MhzPrimeSC)<<5;
regTmp = 0;
if (bShortPreamble) regTmp |= 0x80;
rtw_write8(padapter, REG_RRSR+2, regTmp);
}
break;
case HW_VAR_CAM_EMPTY_ENTRY:
{
u8 ucIndex = *val;
u8 i;
u32 ulCommand = 0;
u32 ulContent = 0;
u32 ulEncAlgo = CAM_AES;
for (i=0; i<CAM_CONTENT_COUNT; i++)
{
// filled id in CAM config 2 byte
if (i == 0)
{
ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
//ulContent |= CAM_VALID;
}
else
{
ulContent = 0;
}
// polling bit, and No Write enable, and address
ulCommand = CAM_CONTENT_COUNT*ucIndex+i;
ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
// write content 0 is equall to mark invalid
rtw_write32(padapter, WCAMI, ulContent); //delay_ms(40);
//RT_TRACE(COMP_SEC, DBG_LOUD, ("CAM_empty_entry(): WRITE A4: %lx \n",ulContent));
rtw_write32(padapter, RWCAM, ulCommand); //delay_ms(40);
//RT_TRACE(COMP_SEC, DBG_LOUD, ("CAM_empty_entry(): WRITE A0: %lx \n",ulCommand));
}
}
break;
case HW_VAR_CAM_INVALID_ALL:
rtw_write32(padapter, RWCAM, BIT(31)|BIT(30));
break;
case HW_VAR_AC_PARAM_VO:
rtw_write32(padapter, REG_EDCA_VO_PARAM, *((u32*)val));
break;
case HW_VAR_AC_PARAM_VI:
rtw_write32(padapter, REG_EDCA_VI_PARAM, *((u32*)val));
break;
case HW_VAR_AC_PARAM_BE:
pHalData->AcParam_BE = ((u32*)(val))[0];
rtw_write32(padapter, REG_EDCA_BE_PARAM, *((u32*)val));
break;
case HW_VAR_AC_PARAM_BK:
rtw_write32(padapter, REG_EDCA_BK_PARAM, *((u32*)val));
break;
case HW_VAR_ACM_CTRL:
{
u8 ctrl = *((u8*)val);
u8 hwctrl = 0;
if (ctrl != 0)
{
hwctrl |= AcmHw_HwEn;
if (ctrl & BIT(1)) // BE
hwctrl |= AcmHw_BeqEn;
if (ctrl & BIT(2)) // VI
hwctrl |= AcmHw_ViqEn;
if (ctrl & BIT(3)) // VO
hwctrl |= AcmHw_VoqEn;
}
DBG_8192C("[HW_VAR_ACM_CTRL] Write 0x%02X\n", hwctrl);
rtw_write8(padapter, REG_ACMHWCTRL, hwctrl);
}
break;
case HW_VAR_AMPDU_FACTOR:
{
u32 AMPDULen = (*((u8 *)val));
if(AMPDULen < HT_AGG_SIZE_32K)
AMPDULen = (0x2000 << (*((u8 *)val))) -1;
else
AMPDULen = 0x7fff;
rtw_write32(padapter, REG_AMPDU_MAX_LENGTH_8703B, AMPDULen);
}
break;
#if 0
case HW_VAR_RXDMA_AGG_PG_TH:
rtw_write8(padapter, REG_RXDMA_AGG_PG_TH, *val);
break;
#endif
case HW_VAR_H2C_FW_PWRMODE:
{
u8 psmode = *val;
// Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power
// saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang.
if (psmode != PS_MODE_ACTIVE)
{
ODM_RF_Saving(&pHalData->odmpriv, _TRUE);
}
//if (psmode != PS_MODE_ACTIVE) {
// rtl8703b_set_lowpwr_lps_cmd(padapter, _TRUE);
//} else {
// rtl8703b_set_lowpwr_lps_cmd(padapter, _FALSE);
//}
rtl8703b_set_FwPwrMode_cmd(padapter, psmode);
}
break;
case HW_VAR_H2C_PS_TUNE_PARAM:
rtl8703b_set_FwPsTuneParam_cmd(padapter);
break;
case HW_VAR_H2C_FW_JOINBSSRPT:
rtl8703b_set_FwJoinBssRpt_cmd(padapter, *val);
break;
#ifdef CONFIG_P2P
case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
rtl8703b_set_p2p_ps_offload_cmd(padapter, *val);
break;
#endif //CONFIG_P2P
#ifdef CONFIG_TDLS
case HW_VAR_TDLS_WRCR:
rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)&(~RCR_CBSSID_DATA ));
break;
case HW_VAR_TDLS_RS_RCR:
rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|(RCR_CBSSID_DATA));
break;
#endif //CONFIG_TDLS
#ifdef CONFIG_ANTENNA_DIVERSITY
case HW_VAR_ANTENNA_DIVERSITY_SELECT:
{
u8 Optimum_antenna = (*(u8 *)val);
u8 Ant;
/*switch antenna to Optimum_antenna*/
/*DBG_8192C("==> HW_VAR_ANTENNA_DIVERSITY_SELECT , Ant_(%s)\n",(Optimum_antenna==2)?"A":"B");*/
if (pHalData->CurAntenna != Optimum_antenna) {
Ant = (Optimum_antenna == 2) ? MAIN_ANT : AUX_ANT;
ODM_UpdateRxIdleAnt(&pHalData->odmpriv, Ant);
pHalData->CurAntenna = Optimum_antenna;
/*DBG_8192C("==> HW_VAR_ANTENNA_DIVERSITY_SELECT , Ant_(%s)\n",(Optimum_antenna==2)?"A":"B");*/
}
}
break;
#endif
case HW_VAR_EFUSE_USAGE:
pHalData->EfuseUsedPercentage = *val;
break;
case HW_VAR_EFUSE_BYTES:
pHalData->EfuseUsedBytes = *((u16*)val);
break;
case HW_VAR_EFUSE_BT_USAGE:
#ifdef HAL_EFUSE_MEMORY
pHalData->EfuseHal.BTEfuseUsedPercentage = *val;
#endif
break;
case HW_VAR_EFUSE_BT_BYTES:
#ifdef HAL_EFUSE_MEMORY
pHalData->EfuseHal.BTEfuseUsedBytes = *((u16*)val);
#else
BTEfuseUsedBytes = *((u16*)val);
#endif
break;
case HW_VAR_FIFO_CLEARN_UP:
{
#define RW_RELEASE_EN BIT(18)
#define RXDMA_IDLE BIT(17)
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
u8 trycnt = 100;
// pause tx
rtw_write8(padapter, REG_TXPAUSE, 0xff);
// keep sn
padapter->xmitpriv.nqos_ssn = rtw_read16(padapter, REG_NQOS_SEQ);
if (pwrpriv->bkeepfwalive != _TRUE)
{
/* RX DMA stop */
val32 = rtw_read32(padapter, REG_RXPKT_NUM);
val32 |= RW_RELEASE_EN;
rtw_write32(padapter, REG_RXPKT_NUM, val32);
do {
val32 = rtw_read32(padapter, REG_RXPKT_NUM);
val32 &= RXDMA_IDLE;
if (val32)
break;
DBG_871X("%s: [HW_VAR_FIFO_CLEARN_UP] val=%x times:%d\n", __FUNCTION__, val32, trycnt);
} while (--trycnt);
if (trycnt == 0) {
DBG_8192C("[HW_VAR_FIFO_CLEARN_UP] Stop RX DMA failed......\n");
}
// RQPN Load 0
rtw_write16(padapter, REG_RQPN_NPQ, 0);
rtw_write32(padapter, REG_RQPN, 0x80000000);
rtw_mdelay_os(2);
}
}
break;
case HW_VAR_RESTORE_HW_SEQ:
/* restore Sequence No. */
rtw_write8(padapter, 0x4dc, padapter->xmitpriv.nqos_ssn);
break;
#ifdef CONFIG_CONCURRENT_MODE
case HW_VAR_CHECK_TXBUF:
{
u32 i;
u8 RetryLimit = 0x01;
u32 reg_200, reg_204;
val16 = RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT;
rtw_write16(padapter, REG_RL, val16);
for (i=0; i<200; i++) // polling 200x10=2000 msec
{
reg_200 = rtw_read32(padapter, 0x200);
reg_204 = rtw_read32(padapter, 0x204);
if (reg_200 != reg_204)
{
//DBG_871X("packet in tx packet buffer - 0x204=%x, 0x200=%x (%d)\n", rtw_read32(padapter, 0x204), rtw_read32(padapter, 0x200), i);
rtw_msleep_os(10);
}
else
{
DBG_871X("[HW_VAR_CHECK_TXBUF] no packet in tx packet buffer (%d)\n", i);
break;
}
}
if (reg_200 != reg_204)
DBG_871X("packets in tx buffer - 0x204=%x, 0x200=%x\n", reg_204, reg_200);
RetryLimit = 0x30;
val16 = RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT;
rtw_write16(padapter, REG_RL, val16);
}
break;
#endif // CONFIG_CONCURRENT_MODE
case HW_VAR_APFM_ON_MAC:
pHalData->bMacPwrCtrlOn = *val;
#ifdef PLATFORM_LINUX
DBG_8192C("%s: bMacPwrCtrlOn=%d\n", __func__, pHalData->bMacPwrCtrlOn);
#endif
break;
case HW_VAR_NAV_UPPER:
{
u32 usNavUpper = *((u32*)val);
if (usNavUpper > HAL_NAV_UPPER_UNIT_8703B * 0xFF)
{
RT_TRACE(_module_hal_init_c_, _drv_notice_, ("The setting value (0x%08X us) of NAV_UPPER is larger than (%d * 0xFF)!!!\n", usNavUpper, HAL_NAV_UPPER_UNIT_8703B));
break;
}
// The value of ((usNavUpper + HAL_NAV_UPPER_UNIT_8703B - 1) / HAL_NAV_UPPER_UNIT_8703B)
// is getting the upper integer.
usNavUpper = (usNavUpper + HAL_NAV_UPPER_UNIT_8703B - 1) / HAL_NAV_UPPER_UNIT_8703B;
rtw_write8(padapter, REG_NAV_UPPER, (u8)usNavUpper);
}
break;
#ifndef CONFIG_C2H_PACKET_EN
case HW_VAR_C2H_HANDLE:
C2HCommandHandler(padapter);
break;
#endif
case HW_VAR_BCN_VALID:
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->iface_type == IFACE_PORT1)
{
val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8703B+2);
val8 |= BIT(0);
rtw_write8(padapter, REG_DWBCN1_CTRL_8703B+2, val8);
}
else
#endif // CONFIG_CONCURRENT_MODE
{
// BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw
val8 = rtw_read8(padapter, REG_TDECTRL+2);
val8 |= BIT(0);
rtw_write8(padapter, REG_TDECTRL+2, val8);
}
break;
case HW_VAR_DL_BCN_SEL:
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->iface_type == IFACE_PORT1)
{
// SW_BCN_SEL - Port1
val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8703B+2);
val8 |= BIT(4);
rtw_write8(padapter, REG_DWBCN1_CTRL_8703B+2, val8);
}
else
#endif // CONFIG_CONCURRENT_MODE
{
// SW_BCN_SEL - Port0
val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8703B+2);
val8 &= ~BIT(4);
rtw_write8(padapter, REG_DWBCN1_CTRL_8703B+2, val8);
}
break;
case HW_VAR_DO_IQK:
if (*val)
pHalData->bNeedIQK = _TRUE;
else
pHalData->bNeedIQK = _FALSE;
break;
case HW_VAR_DL_RSVD_PAGE:
#ifdef CONFIG_BT_COEXIST
if (check_fwstate(&padapter->mlmepriv, WIFI_AP_STATE) == _TRUE)
{
rtl8703b_download_BTCoex_AP_mode_rsvd_page(padapter);
}
else
#endif // CONFIG_BT_COEXIST
{
rtl8703b_download_rsvd_page(padapter, RT_MEDIA_CONNECT);
}
break;
case HW_VAR_MACID_SLEEP:
{
u32 reg_macid_sleep;
u8 bit_shift;
u8 id = *(u8*)val;
if (id < 32) {
reg_macid_sleep = REG_MACID_SLEEP;
bit_shift = id;
} else if (id < 64) {
reg_macid_sleep = REG_MACID_SLEEP_1;
bit_shift = id-32;
} else if (id < 96) {
reg_macid_sleep = REG_MACID_SLEEP_2;
bit_shift = id-64;
} else if (id < 128) {
reg_macid_sleep = REG_MACID_SLEEP_3;
bit_shift = id-96;
} else {
rtw_warn_on(1);
break;
}
val32 = rtw_read32(padapter, reg_macid_sleep);
DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_SLEEP] macid=%d, org reg_0x%03x=0x%08X\n",
FUNC_ADPT_ARG(padapter), id, reg_macid_sleep, val32);
if (val32 & BIT(bit_shift))
break;
val32 |= BIT(bit_shift);
rtw_write32(padapter, reg_macid_sleep, val32);
}
break;
case HW_VAR_MACID_WAKEUP:
{
u32 reg_macid_sleep;
u8 bit_shift;
u8 id = *(u8*)val;
if (id < 32) {
reg_macid_sleep = REG_MACID_SLEEP;
bit_shift = id;
} else if (id < 64) {
reg_macid_sleep = REG_MACID_SLEEP_1;
bit_shift = id-32;
} else if (id < 96) {
reg_macid_sleep = REG_MACID_SLEEP_2;
bit_shift = id-64;
} else if (id < 128) {
reg_macid_sleep = REG_MACID_SLEEP_3;
bit_shift = id-96;
} else {
rtw_warn_on(1);
break;
}
val32 = rtw_read32(padapter, reg_macid_sleep);
DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_WAKEUP] macid=%d, org reg_0x%03x=0x%08X\n",
FUNC_ADPT_ARG(padapter), id, reg_macid_sleep, val32);
if (!(val32 & BIT(bit_shift)))
break;
val32 &= ~BIT(bit_shift);
rtw_write32(padapter, reg_macid_sleep, val32);
}
break;
#ifdef CONFIG_GPIO_WAKEUP
case HW_SET_GPIO_WL_CTRL:
{
u8 enable = *val;
u8 value = rtw_read8(padapter, 0x4e);
if (enable && (value & BIT(6))) {
value &= ~BIT(6);
rtw_write8(padapter, 0x4e, value);
} else if (enable == _FALSE){
value |= BIT(6);
rtw_write8(padapter, 0x4e, value);
}
DBG_871X("%s: set WL control, 0x4E=0x%02X\n",
__func__, rtw_read8(padapter, 0x4e));
}
break;
#endif
default:
SetHwReg(padapter, variable, val);
break;
}
_func_exit_;
}
struct qinfo_8703b {
u32 head:8;
u32 pkt_num:7;
u32 tail:8;
u32 ac:2;
u32 macid:7;
};
struct bcn_qinfo_8703b {
u16 head:8;
u16 pkt_num:8;
};
void dump_qinfo_8703b(void *sel, struct qinfo_8703b *info, const char *tag)
{
//if (info->pkt_num)
DBG_871X_SEL_NL(sel, "%shead:0x%02x, tail:0x%02x, pkt_num:%u, macid:%u, ac:%u\n"
, tag ? tag : "", info->head, info->tail, info->pkt_num, info->macid, info->ac
);
}
void dump_bcn_qinfo_8703b(void *sel, struct bcn_qinfo_8703b *info, const char *tag)
{
//if (info->pkt_num)
DBG_871X_SEL_NL(sel, "%shead:0x%02x, pkt_num:%u\n"
, tag ? tag : "", info->head, info->pkt_num
);
}
void dump_mac_qinfo_8703b(void *sel, _adapter *adapter)
{
u32 q0_info;
u32 q1_info;
u32 q2_info;
u32 q3_info;
u32 q4_info;
u32 q5_info;
u32 q6_info;
u32 q7_info;
u32 mg_q_info;
u32 hi_q_info;
u16 bcn_q_info;
q0_info = rtw_read32(adapter, REG_Q0_INFO);
q1_info = rtw_read32(adapter, REG_Q1_INFO);
q2_info = rtw_read32(adapter, REG_Q2_INFO);
q3_info = rtw_read32(adapter, REG_Q3_INFO);
q4_info = rtw_read32(adapter, REG_Q4_INFO);
q5_info = rtw_read32(adapter, REG_Q5_INFO);
q6_info = rtw_read32(adapter, REG_Q6_INFO);
q7_info = rtw_read32(adapter, REG_Q7_INFO);
mg_q_info = rtw_read32(adapter, REG_MGQ_INFO);
hi_q_info = rtw_read32(adapter, REG_HGQ_INFO);
bcn_q_info = rtw_read16(adapter, REG_BCNQ_INFO);
dump_qinfo_8703b(sel, (struct qinfo_8703b *)&q0_info, "Q0 ");
dump_qinfo_8703b(sel, (struct qinfo_8703b *)&q1_info, "Q1 ");
dump_qinfo_8703b(sel, (struct qinfo_8703b *)&q2_info, "Q2 ");
dump_qinfo_8703b(sel, (struct qinfo_8703b *)&q3_info, "Q3 ");
dump_qinfo_8703b(sel, (struct qinfo_8703b *)&q4_info, "Q4 ");
dump_qinfo_8703b(sel, (struct qinfo_8703b *)&q5_info, "Q5 ");
dump_qinfo_8703b(sel, (struct qinfo_8703b *)&q6_info, "Q6 ");
dump_qinfo_8703b(sel, (struct qinfo_8703b *)&q7_info, "Q7 ");
dump_qinfo_8703b(sel, (struct qinfo_8703b *)&mg_q_info, "MG ");
dump_qinfo_8703b(sel, (struct qinfo_8703b *)&hi_q_info, "HI ");
dump_bcn_qinfo_8703b(sel, (struct bcn_qinfo_8703b *)&bcn_q_info, "BCN ");
}
void GetHwReg8703B(PADAPTER padapter, u8 variable, u8 *val)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
u8 val8;
u16 val16;
u32 val32;
switch (variable)
{
case HW_VAR_TXPAUSE:
*val = rtw_read8(padapter, REG_TXPAUSE);
break;
case HW_VAR_BCN_VALID:
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->iface_type == IFACE_PORT1)
{
val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8703B+2);
*val = (BIT(0) & val8) ? _TRUE:_FALSE;
}
else
#endif
{
// BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2
val8 = rtw_read8(padapter, REG_TDECTRL+2);
*val = (BIT(0) & val8) ? _TRUE:_FALSE;
}
break;
case HW_VAR_FWLPS_RF_ON:
{
// When we halt NIC, we should check if FW LPS is leave.
u32 valRCR;
if (rtw_is_surprise_removed(padapter) ||
(adapter_to_pwrctl(padapter)->rf_pwrstate == rf_off))
{
// If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave,
// because Fw is unload.
*val = _TRUE;
}
else
{
valRCR = rtw_read32(padapter, REG_RCR);
valRCR &= 0x00070000;
if(valRCR)
*val = _FALSE;
else
*val = _TRUE;
}
}
break;
#ifdef CONFIG_ANTENNA_DIVERSITY
case HW_VAR_CURRENT_ANTENNA:
*val = pHalData->CurAntenna;
break;
#endif
case HW_VAR_EFUSE_USAGE:
*val = pHalData->EfuseUsedPercentage;
break;
case HW_VAR_EFUSE_BYTES:
*((u16*)val) = pHalData->EfuseUsedBytes;
break;
case HW_VAR_EFUSE_BT_USAGE:
#ifdef HAL_EFUSE_MEMORY
*val = pHalData->EfuseHal.BTEfuseUsedPercentage;
#endif
break;
case HW_VAR_EFUSE_BT_BYTES:
#ifdef HAL_EFUSE_MEMORY
*((u16*)val) = pHalData->EfuseHal.BTEfuseUsedBytes;
#else
*((u16*)val) = BTEfuseUsedBytes;
#endif
break;
case HW_VAR_APFM_ON_MAC:
*val = pHalData->bMacPwrCtrlOn;
break;
case HW_VAR_CHK_HI_QUEUE_EMPTY:
val16 = rtw_read16(padapter, REG_TXPKT_EMPTY);
*val = (val16 & BIT(10)) ? _TRUE:_FALSE;
break;
#ifdef CONFIG_WOWLAN
case HW_VAR_RPWM_TOG:
*val = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HRPWM1) & BIT7;
break;
case HW_VAR_WAKEUP_REASON:
*val = rtw_read8(padapter, REG_WOWLAN_WAKE_REASON);
if(*val == 0xEA)
*val = 0;
break;
case HW_VAR_SYS_CLKR:
*val = rtw_read8(padapter, REG_SYS_CLKR);
break;
#endif
case HW_VAR_DUMP_MAC_QUEUE_INFO:
dump_mac_qinfo_8703b(val, padapter);
break;
default:
GetHwReg(padapter, variable, val);
break;
}
}
/*
* Description:
* Change default setting of specified variable.
*/
u8 SetHalDefVar8703B(PADAPTER padapter, HAL_DEF_VARIABLE variable, void *pval)
{
PHAL_DATA_TYPE pHalData;
u8 bResult;
pHalData = GET_HAL_DATA(padapter);
bResult = _SUCCESS;
switch (variable)
{
default:
bResult = SetHalDefVar(padapter, variable, pval);
break;
}
return bResult;
}
#ifdef CONFIG_C2H_PACKET_EN
void SetHwRegWithBuf8703B(PADAPTER padapter, u8 variable, u8 *pbuf, int len)
{
PHAL_DATA_TYPE pHalData;
_func_enter_;
pHalData = GET_HAL_DATA(padapter);
switch (variable) {
case HW_VAR_C2H_HANDLE:
C2HPacketHandler_8703B(padapter, pbuf, len);
break;
default:
break;
}
_func_exit_;
}
#endif // CONFIG_C2H_PACKET_EN
/*
* Description:
* Query setting of specified variable.
*/
u8 GetHalDefVar8703B(PADAPTER padapter, HAL_DEF_VARIABLE variable, void *pval)
{
PHAL_DATA_TYPE pHalData;
u8 bResult;
pHalData = GET_HAL_DATA(padapter);
bResult = _SUCCESS;
switch (variable)
{
case HAL_DEF_MAX_RECVBUF_SZ:
*((u32*)pval) = MAX_RECVBUF_SZ;
break;
case HAL_DEF_RX_PACKET_OFFSET:
*((u32*)pval) = RXDESC_SIZE + DRVINFO_SZ*8;
break;
case HW_VAR_MAX_RX_AMPDU_FACTOR:
// Stanley@BB.SD3 suggests 16K can get stable performance
// The experiment was done on SDIO interface
// coding by Lucas@20130730
*(HT_CAP_AMPDU_FACTOR*)pval = MAX_AMPDU_FACTOR_16K;
break;
case HW_VAR_BEST_AMPDU_DENSITY:
*((u32 *)pval) = AMPDU_DENSITY_VALUE_7;
break;
case HAL_DEF_TX_LDPC:
case HAL_DEF_RX_LDPC:
*((u8 *)pval) = _FALSE;
break;
case HAL_DEF_TX_STBC:
*((u8 *)pval) = 0;
break;
case HAL_DEF_RX_STBC:
*((u8 *)pval) = 1;
break;
case HAL_DEF_EXPLICIT_BEAMFORMER:
case HAL_DEF_EXPLICIT_BEAMFORMEE:
*((u8 *)pval) = _FALSE;
break;
case HW_DEF_RA_INFO_DUMP:
{
u8 mac_id = *(u8*)pval;
u32 cmd;
u32 ra_info1, ra_info2;
u32 rate_mask1, rate_mask2;
u8 curr_tx_rate,curr_tx_sgi,hight_rate,lowest_rate;
DBG_8192C("============ RA status check Mac_id:%d ===================\n", mac_id);
cmd = 0x40000100 | mac_id;
rtw_write32(padapter, REG_HMEBOX_DBG_2_8703B, cmd);
rtw_msleep_os(10);
ra_info1 = rtw_read32(padapter, 0x2F0);
curr_tx_rate = ra_info1&0x7F;
curr_tx_sgi = (ra_info1>>7)&0x01;
DBG_8192C("[ ra_info1:0x%08x ] =>cur_tx_rate= %s,cur_sgi:%d, PWRSTS = 0x%02x \n",
ra_info1,
HDATA_RATE(curr_tx_rate),
curr_tx_sgi,
(ra_info1>>8) & 0x07);
cmd = 0x40000400 | mac_id;
rtw_write32(padapter, REG_HMEBOX_DBG_2_8703B,cmd);
rtw_msleep_os(10);
ra_info1 = rtw_read32(padapter, 0x2F0);
ra_info2 = rtw_read32(padapter, 0x2F4);
rate_mask1 = rtw_read32(padapter, 0x2F8);
rate_mask2 = rtw_read32(padapter, 0x2FC);
hight_rate = ra_info2&0xFF;
lowest_rate = (ra_info2>>8) & 0xFF;
DBG_8192C("[ ra_info1:0x%08x ] =>RSSI=%d, BW_setting=0x%02x, DISRA=0x%02x, VHT_EN=0x%02x\n",
ra_info1,
ra_info1&0xFF,
(ra_info1>>8) & 0xFF,
(ra_info1>>16) & 0xFF,
(ra_info1>>24) & 0xFF);
DBG_8192C("[ ra_info2:0x%08x ] =>hight_rate=%s, lowest_rate=%s, SGI=0x%02x, RateID=%d\n",
ra_info2,
HDATA_RATE(hight_rate),
HDATA_RATE(lowest_rate),
(ra_info2>>16) & 0xFF,
(ra_info2>>24) & 0xFF);
DBG_8192C("rate_mask2=0x%08x, rate_mask1=0x%08x\n", rate_mask2, rate_mask1);
}
break;
case HAL_DEF_TX_PAGE_BOUNDARY:
if (!padapter->registrypriv.wifi_spec)
{
*(u8*)pval = TX_PAGE_BOUNDARY_8703B;
}
else
{
*(u8*)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8703B;
}
break;
case HAL_DEF_MACID_SLEEP:
*(u8*)pval = _TRUE; // support macid sleep
break;
case HAL_DEF_TX_PAGE_SIZE:
*(( u32*)pval) = PAGE_SIZE_128;
break;
case HAL_DEF_RX_DMA_SZ_WOW:
*(u32 *)pval = RX_DMA_SIZE_8703B - RESV_FMWF;
break;
case HAL_DEF_RX_DMA_SZ:
*(u32 *)pval = RX_DMA_BOUNDARY_8703B + 1;
break;
case HAL_DEF_RX_PAGE_SIZE:
*((u32 *)pval) = 8;
break;
default:
bResult = GetHalDefVar(padapter, variable, pval);
break;
}
return bResult;
}
#ifdef CONFIG_WOWLAN
void Hal_DetectWoWMode(PADAPTER pAdapter)
{
adapter_to_pwrctl(pAdapter)->bSupportRemoteWakeup = _TRUE;
DBG_871X("%s\n", __func__);
}
#endif //CONFIG_WOWLAN
void rtl8703b_start_thread(_adapter *padapter)
{
#if (defined CONFIG_SDIO_HCI) || (defined CONFIG_GSPI_HCI)
#ifndef CONFIG_SDIO_TX_TASKLET
struct xmit_priv *xmitpriv = &padapter->xmitpriv;
xmitpriv->SdioXmitThread = kthread_run(rtl8703bs_xmit_thread, padapter, "RTWHALXT");
if (IS_ERR(xmitpriv->SdioXmitThread))
{
RT_TRACE(_module_hal_xmit_c_, _drv_err_, ("%s: start rtl8703bs_xmit_thread FAIL!!\n", __FUNCTION__));
}
#endif
#endif
}
void rtl8703b_stop_thread(_adapter *padapter)
{
#if (defined CONFIG_SDIO_HCI) || (defined CONFIG_GSPI_HCI)
#ifndef CONFIG_SDIO_TX_TASKLET
struct xmit_priv *xmitpriv = &padapter->xmitpriv;
// stop xmit_buf_thread
if (xmitpriv->SdioXmitThread ) {
_rtw_up_sema(&xmitpriv->SdioXmitSema);
_rtw_down_sema(&xmitpriv->SdioXmitTerminateSema);
xmitpriv->SdioXmitThread = 0;
}
#endif
#endif
}
#if defined(CONFIG_CHECK_BT_HANG) && defined(CONFIG_BT_COEXIST)
extern void check_bt_status_work(void *data);
void rtl8703bs_init_checkbthang_workqueue(_adapter * adapter)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,37))
adapter->priv_checkbt_wq = alloc_workqueue("sdio_wq", 0, 0);
#else
adapter->priv_checkbt_wq = create_workqueue("sdio_wq");
#endif
INIT_DELAYED_WORK(&adapter->checkbt_work, (void*)check_bt_status_work);
}
void rtl8703bs_free_checkbthang_workqueue(_adapter * adapter)
{
if (adapter->priv_checkbt_wq) {
cancel_delayed_work_sync(&adapter->checkbt_work);
flush_workqueue(adapter->priv_checkbt_wq);
destroy_workqueue(adapter->priv_checkbt_wq);
adapter->priv_checkbt_wq = NULL;
}
}
void rtl8703bs_cancle_checkbthang_workqueue(_adapter * adapter)
{
if (adapter->priv_checkbt_wq) {
cancel_delayed_work_sync(&adapter->checkbt_work);
}
}
void rtl8703bs_hal_check_bt_hang(_adapter * adapter)
{
if (adapter->priv_checkbt_wq)
queue_delayed_work(adapter->priv_checkbt_wq, &(adapter->checkbt_work), 0);
}
#endif