rtl8723cs/hal/rtl8703b/sdio/sdio_ops.c

1814 lines
42 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2012 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*******************************************************************************/
#define _SDIO_OPS_C_
#include <rtl8703b_hal.h>
//#define SDIO_DEBUG_IO 1
//
// Description:
// The following mapping is for SDIO host local register space.
//
// Creadted by Roger, 2011.01.31.
//
static void HalSdioGetCmdAddr8703BSdio(
IN PADAPTER padapter,
IN u8 DeviceID,
IN u32 Addr,
OUT u32* pCmdAddr
)
{
switch (DeviceID)
{
case SDIO_LOCAL_DEVICE_ID:
*pCmdAddr = ((SDIO_LOCAL_DEVICE_ID << 13) | (Addr & SDIO_LOCAL_MSK));
break;
case WLAN_IOREG_DEVICE_ID:
*pCmdAddr = ((WLAN_IOREG_DEVICE_ID << 13) | (Addr & WLAN_IOREG_MSK));
break;
case WLAN_TX_HIQ_DEVICE_ID:
*pCmdAddr = ((WLAN_TX_HIQ_DEVICE_ID << 13) | (Addr & WLAN_FIFO_MSK));
break;
case WLAN_TX_MIQ_DEVICE_ID:
*pCmdAddr = ((WLAN_TX_MIQ_DEVICE_ID << 13) | (Addr & WLAN_FIFO_MSK));
break;
case WLAN_TX_LOQ_DEVICE_ID:
*pCmdAddr = ((WLAN_TX_LOQ_DEVICE_ID << 13) | (Addr & WLAN_FIFO_MSK));
break;
case WLAN_RX0FF_DEVICE_ID:
*pCmdAddr = ((WLAN_RX0FF_DEVICE_ID << 13) | (Addr & WLAN_RX0FF_MSK));
break;
default:
break;
}
}
static u8 get_deviceid(u32 addr)
{
u8 devideId;
u16 pseudoId;
pseudoId = (u16)(addr >> 16);
switch (pseudoId)
{
case 0x1025:
devideId = SDIO_LOCAL_DEVICE_ID;
break;
case 0x1026:
devideId = WLAN_IOREG_DEVICE_ID;
break;
// case 0x1027:
// devideId = SDIO_FIRMWARE_FIFO;
// break;
case 0x1031:
devideId = WLAN_TX_HIQ_DEVICE_ID;
break;
case 0x1032:
devideId = WLAN_TX_MIQ_DEVICE_ID;
break;
case 0x1033:
devideId = WLAN_TX_LOQ_DEVICE_ID;
break;
case 0x1034:
devideId = WLAN_RX0FF_DEVICE_ID;
break;
default:
// devideId = (u8)((addr >> 13) & 0xF);
devideId = WLAN_IOREG_DEVICE_ID;
break;
}
return devideId;
}
/*
* Ref:
* HalSdioGetCmdAddr8703BSdio()
*/
static u32 _cvrt2ftaddr(const u32 addr, u8 *pdeviceId, u16 *poffset)
{
u8 deviceId;
u16 offset;
u32 ftaddr;
deviceId = get_deviceid(addr);
offset = 0;
switch (deviceId)
{
case SDIO_LOCAL_DEVICE_ID:
offset = addr & SDIO_LOCAL_MSK;
break;
case WLAN_TX_HIQ_DEVICE_ID:
case WLAN_TX_MIQ_DEVICE_ID:
case WLAN_TX_LOQ_DEVICE_ID:
offset = addr & WLAN_FIFO_MSK;
break;
case WLAN_RX0FF_DEVICE_ID:
offset = addr & WLAN_RX0FF_MSK;
break;
case WLAN_IOREG_DEVICE_ID:
default:
deviceId = WLAN_IOREG_DEVICE_ID;
offset = addr & WLAN_IOREG_MSK;
break;
}
ftaddr = (deviceId << 13) | offset;
if (pdeviceId) *pdeviceId = deviceId;
if (poffset) *poffset = offset;
return ftaddr;
}
u8 sdio_read8(struct intf_hdl *pintfhdl, u32 addr)
{
u32 ftaddr;
u8 val;
_func_enter_;
ftaddr = _cvrt2ftaddr(addr, NULL, NULL);
val = sd_read8(pintfhdl, ftaddr, NULL);
_func_exit_;
return val;
}
u16 sdio_read16(struct intf_hdl *pintfhdl, u32 addr)
{
u32 ftaddr;
u16 val;
_func_enter_;
ftaddr = _cvrt2ftaddr(addr, NULL, NULL);
val = 0;
sd_cmd52_read(pintfhdl, ftaddr, 2, (u8*)&val);
val = le16_to_cpu(val);
_func_exit_;
return val;
}
u32 sdio_read32(struct intf_hdl *pintfhdl, u32 addr)
{
PADAPTER padapter;
u8 bMacPwrCtrlOn;
u8 deviceId;
u16 offset;
u32 ftaddr;
u8 shift;
u32 val;
s32 err;
_func_enter_;
padapter = pintfhdl->padapter;
ftaddr = _cvrt2ftaddr(addr, &deviceId, &offset);
bMacPwrCtrlOn = _FALSE;
rtw_hal_get_hwreg(padapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn);
if (((deviceId == WLAN_IOREG_DEVICE_ID) && (offset < 0x100))
|| (_FALSE == bMacPwrCtrlOn)
#ifdef CONFIG_LPS_LCLK
|| (_TRUE == adapter_to_pwrctl(padapter)->bFwCurrentInPSMode)
#endif
)
{
val = 0;
err = sd_cmd52_read(pintfhdl, ftaddr, 4, (u8*)&val);
#ifdef SDIO_DEBUG_IO
if (!err) {
#endif
val = le32_to_cpu(val);
return val;
#ifdef SDIO_DEBUG_IO
}
DBG_8192C(KERN_ERR "%s: Mac Power off, Read FAIL(%d)! addr=0x%x\n", __func__, err, addr);
return SDIO_ERR_VAL32;
#endif
}
// 4 bytes alignment
shift = ftaddr & 0x3;
if (shift == 0) {
val = sd_read32(pintfhdl, ftaddr, NULL);
} else {
u8 *ptmpbuf;
ptmpbuf = (u8*)rtw_malloc(8);
if (NULL == ptmpbuf) {
DBG_8192C(KERN_ERR "%s: Allocate memory FAIL!(size=8) addr=0x%x\n", __func__, addr);
return SDIO_ERR_VAL32;
}
ftaddr &= ~(u16)0x3;
sd_read(pintfhdl, ftaddr, 8, ptmpbuf);
_rtw_memcpy(&val, ptmpbuf+shift, 4);
val = le32_to_cpu(val);
rtw_mfree(ptmpbuf, 8);
}
_func_exit_;
return val;
}
s32 sdio_readN(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pbuf)
{
PADAPTER padapter;
u8 bMacPwrCtrlOn;
u8 deviceId;
u16 offset;
u32 ftaddr;
u8 shift;
s32 err;
_func_enter_;
padapter = pintfhdl->padapter;
err = 0;
ftaddr = _cvrt2ftaddr(addr, &deviceId, &offset);
bMacPwrCtrlOn = _FALSE;
rtw_hal_get_hwreg(padapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn);
if (((deviceId == WLAN_IOREG_DEVICE_ID) && (offset < 0x100))
|| (_FALSE == bMacPwrCtrlOn)
#ifdef CONFIG_LPS_LCLK
|| (_TRUE == adapter_to_pwrctl(padapter)->bFwCurrentInPSMode)
#endif
)
{
err = sd_cmd52_read(pintfhdl, ftaddr, cnt, pbuf);
return err;
}
// 4 bytes alignment
shift = ftaddr & 0x3;
if (shift == 0) {
err = sd_read(pintfhdl, ftaddr, cnt, pbuf);
} else {
u8 *ptmpbuf;
u32 n;
ftaddr &= ~(u16)0x3;
n = cnt + shift;
ptmpbuf = rtw_malloc(n);
if (NULL == ptmpbuf) return -1;
err = sd_read(pintfhdl, ftaddr, n, ptmpbuf);
if (!err)
_rtw_memcpy(pbuf, ptmpbuf+shift, cnt);
rtw_mfree(ptmpbuf, n);
}
_func_exit_;
return err;
}
s32 sdio_write8(struct intf_hdl *pintfhdl, u32 addr, u8 val)
{
u32 ftaddr;
s32 err;
_func_enter_;
ftaddr = _cvrt2ftaddr(addr, NULL, NULL);
err = 0;
sd_write8(pintfhdl, ftaddr, val, &err);
_func_exit_;
return err;
}
s32 sdio_write16(struct intf_hdl *pintfhdl, u32 addr, u16 val)
{
u32 ftaddr;
u8 shift;
s32 err;
_func_enter_;
ftaddr = _cvrt2ftaddr(addr, NULL, NULL);
val = cpu_to_le16(val);
err = sd_cmd52_write(pintfhdl, ftaddr, 2, (u8*)&val);
_func_exit_;
return err;
}
s32 sdio_write32(struct intf_hdl *pintfhdl, u32 addr, u32 val)
{
PADAPTER padapter;
u8 bMacPwrCtrlOn;
u8 deviceId;
u16 offset;
u32 ftaddr;
u8 shift;
s32 err;
_func_enter_;
padapter = pintfhdl->padapter;
err = 0;
ftaddr = _cvrt2ftaddr(addr, &deviceId, &offset);
bMacPwrCtrlOn = _FALSE;
rtw_hal_get_hwreg(padapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn);
if (((deviceId == WLAN_IOREG_DEVICE_ID) && (offset < 0x100))
|| (_FALSE == bMacPwrCtrlOn)
#ifdef CONFIG_LPS_LCLK
|| (_TRUE == adapter_to_pwrctl(padapter)->bFwCurrentInPSMode)
#endif
)
{
val = cpu_to_le32(val);
err = sd_cmd52_write(pintfhdl, ftaddr, 4, (u8*)&val);
return err;
}
// 4 bytes alignment
shift = ftaddr & 0x3;
#if 1
if (shift == 0)
{
sd_write32(pintfhdl, ftaddr, val, &err);
}
else
{
val = cpu_to_le32(val);
err = sd_cmd52_write(pintfhdl, ftaddr, 4, (u8*)&val);
}
#else
if (shift == 0) {
sd_write32(pintfhdl, ftaddr, val, &err);
} else {
u8 *ptmpbuf;
ptmpbuf = (u8*)rtw_malloc(8);
if (NULL == ptmpbuf) return (-1);
ftaddr &= ~(u16)0x3;
err = sd_read(pintfhdl, ftaddr, 8, ptmpbuf);
if (err) {
rtw_mfree(ptmpbuf, 8);
return err;
}
val = cpu_to_le32(val);
_rtw_memcpy(ptmpbuf+shift, &val, 4);
err = sd_write(pintfhdl, ftaddr, 8, ptmpbuf);
rtw_mfree(ptmpbuf, 8);
}
#endif
_func_exit_;
return err;
}
s32 sdio_writeN(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8* pbuf)
{
PADAPTER padapter;
u8 bMacPwrCtrlOn;
u8 deviceId;
u16 offset;
u32 ftaddr;
u8 shift;
s32 err;
_func_enter_;
padapter = pintfhdl->padapter;
err = 0;
ftaddr = _cvrt2ftaddr(addr, &deviceId, &offset);
bMacPwrCtrlOn = _FALSE;
rtw_hal_get_hwreg(padapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn);
if (((deviceId == WLAN_IOREG_DEVICE_ID) && (offset < 0x100))
|| (_FALSE == bMacPwrCtrlOn)
#ifdef CONFIG_LPS_LCLK
|| (_TRUE == adapter_to_pwrctl(padapter)->bFwCurrentInPSMode)
#endif
)
{
err = sd_cmd52_write(pintfhdl, ftaddr, cnt, pbuf);
return err;
}
shift = ftaddr & 0x3;
if (shift == 0) {
err = sd_write(pintfhdl, ftaddr, cnt, pbuf);
} else {
u8 *ptmpbuf;
u32 n;
ftaddr &= ~(u16)0x3;
n = cnt + shift;
ptmpbuf = rtw_malloc(n);
if (NULL == ptmpbuf) return -1;
err = sd_read(pintfhdl, ftaddr, 4, ptmpbuf);
if (err) {
rtw_mfree(ptmpbuf, n);
return err;
}
_rtw_memcpy(ptmpbuf+shift, pbuf, cnt);
err = sd_write(pintfhdl, ftaddr, n, ptmpbuf);
rtw_mfree(ptmpbuf, n);
}
_func_exit_;
return err;
}
u8 sdio_f0_read8(struct intf_hdl *pintfhdl, u32 addr)
{
u32 ftaddr;
u8 val;
_func_enter_;
val = sd_f0_read8(pintfhdl, addr, NULL);
_func_exit_;
return val;
}
void sdio_read_mem(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *rmem)
{
s32 err;
_func_enter_;
err = sdio_readN(pintfhdl, addr, cnt, rmem);
_func_exit_;
}
void sdio_write_mem(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *wmem)
{
_func_enter_;
sdio_writeN(pintfhdl, addr, cnt, wmem);
_func_exit_;
}
/*
* Description:
* Read from RX FIFO
* Round read size to block size,
* and make sure data transfer will be done in one command.
*
* Parameters:
* pintfhdl a pointer of intf_hdl
* addr port ID
* cnt size to read
* rmem address to put data
*
* Return:
* _SUCCESS(1) Success
* _FAIL(0) Fail
*/
static u32 sdio_read_port(
struct intf_hdl *pintfhdl,
u32 addr,
u32 cnt,
u8 *mem)
{
PADAPTER padapter;
PSDIO_DATA psdio;
PHAL_DATA_TYPE phal;
u32 oldcnt;
#ifdef SDIO_DYNAMIC_ALLOC_MEM
u8 *oldmem;
#endif
s32 err;
padapter = pintfhdl->padapter;
psdio = &adapter_to_dvobj(padapter)->intf_data;
phal = GET_HAL_DATA(padapter);
HalSdioGetCmdAddr8703BSdio(padapter, addr, phal->SdioRxFIFOCnt++, &addr);
oldcnt = cnt;
if (cnt > psdio->block_transfer_len)
cnt = _RND(cnt, psdio->block_transfer_len);
// cnt = sdio_align_size(cnt);
if (oldcnt != cnt) {
#ifdef SDIO_DYNAMIC_ALLOC_MEM
oldmem = mem;
mem = rtw_malloc(cnt);
if (mem == NULL) {
DBG_8192C(KERN_WARNING "%s: allocate memory %d bytes fail!\n", __func__, cnt);
mem = oldmem;
oldmem == NULL;
}
#else
// in this case, caller should gurante the buffer is big enough
// to receive data after alignment
#endif
}
err = _sd_read(pintfhdl, addr, cnt, mem);
#ifdef SDIO_DYNAMIC_ALLOC_MEM
if ((oldcnt != cnt) && (oldmem)) {
_rtw_memcpy(oldmem, mem, oldcnt);
rtw_mfree(mem, cnt);
}
#endif
if (err) return _FAIL;
return _SUCCESS;
}
/*
* Description:
* Write to TX FIFO
* Align write size block size,
* and make sure data could be written in one command.
*
* Parameters:
* pintfhdl a pointer of intf_hdl
* addr port ID
* cnt size to write
* wmem data pointer to write
*
* Return:
* _SUCCESS(1) Success
* _FAIL(0) Fail
*/
static u32 sdio_write_port(
struct intf_hdl *pintfhdl,
u32 addr,
u32 cnt,
u8 *mem)
{
PADAPTER padapter;
PSDIO_DATA psdio;
s32 err;
struct xmit_buf *xmitbuf = (struct xmit_buf *)mem;
padapter = pintfhdl->padapter;
psdio = &adapter_to_dvobj(padapter)->intf_data;
if (!rtw_is_hw_init_completed(padapter)) {
DBG_871X("%s [addr=0x%x cnt=%d] padapter->hw_init_completed == _FALSE\n",__func__,addr,cnt);
return _FAIL;
}
cnt = _RND4(cnt);
HalSdioGetCmdAddr8703BSdio(padapter, addr, cnt >> 2, &addr);
if (cnt > psdio->block_transfer_len)
cnt = _RND(cnt, psdio->block_transfer_len);
// cnt = sdio_align_size(cnt);
err = sd_write(pintfhdl, addr, cnt, xmitbuf->pdata);
rtw_sctx_done_err(&xmitbuf->sctx,
err ? RTW_SCTX_DONE_WRITE_PORT_ERR : RTW_SCTX_DONE_SUCCESS);
if (err) return _FAIL;
return _SUCCESS;
}
void sdio_set_intf_ops(_adapter *padapter, struct _io_ops *pops)
{
_func_enter_;
pops->_read8 = &sdio_read8;
pops->_read16 = &sdio_read16;
pops->_read32 = &sdio_read32;
pops->_read_mem = &sdio_read_mem;
pops->_read_port = &sdio_read_port;
pops->_write8 = &sdio_write8;
pops->_write16 = &sdio_write16;
pops->_write32 = &sdio_write32;
pops->_writeN = &sdio_writeN;
pops->_write_mem = &sdio_write_mem;
pops->_write_port = &sdio_write_port;
pops->_sd_f0_read8 = sdio_f0_read8;
_func_exit_;
}
/*
* Todo: align address to 4 bytes.
*/
s32 _sdio_local_read(
PADAPTER padapter,
u32 addr,
u32 cnt,
u8 *pbuf)
{
struct intf_hdl * pintfhdl;
u8 bMacPwrCtrlOn;
s32 err;
u8 *ptmpbuf;
u32 n;
pintfhdl=&padapter->iopriv.intf;
HalSdioGetCmdAddr8703BSdio(padapter, SDIO_LOCAL_DEVICE_ID, addr, &addr);
bMacPwrCtrlOn = _FALSE;
rtw_hal_get_hwreg(padapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn);
if (_FALSE == bMacPwrCtrlOn)
{
err = _sd_cmd52_read(pintfhdl, addr, cnt, pbuf);
return err;
}
n = RND4(cnt);
ptmpbuf = (u8*)rtw_malloc(n);
if (!ptmpbuf)
return (-1);
err = _sd_read(pintfhdl, addr, n, ptmpbuf);
if (!err)
_rtw_memcpy(pbuf, ptmpbuf, cnt);
if (ptmpbuf)
rtw_mfree(ptmpbuf, n);
return err;
}
/*
* Todo: align address to 4 bytes.
*/
s32 sdio_local_read(
PADAPTER padapter,
u32 addr,
u32 cnt,
u8 *pbuf)
{
struct intf_hdl * pintfhdl;
u8 bMacPwrCtrlOn;
s32 err;
u8 *ptmpbuf;
u32 n;
pintfhdl=&padapter->iopriv.intf;
HalSdioGetCmdAddr8703BSdio(padapter, SDIO_LOCAL_DEVICE_ID, addr, &addr);
bMacPwrCtrlOn = _FALSE;
rtw_hal_get_hwreg(padapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn);
if ((_FALSE == bMacPwrCtrlOn)
#ifdef CONFIG_LPS_LCLK
|| (_TRUE == adapter_to_pwrctl(padapter)->bFwCurrentInPSMode)
#endif
)
{
err = sd_cmd52_read(pintfhdl, addr, cnt, pbuf);
return err;
}
n = RND4(cnt);
ptmpbuf = (u8*)rtw_malloc(n);
if (!ptmpbuf)
return (-1);
err = sd_read(pintfhdl, addr, n, ptmpbuf);
if (!err)
_rtw_memcpy(pbuf, ptmpbuf, cnt);
if (ptmpbuf)
rtw_mfree(ptmpbuf, n);
return err;
}
/*
* Todo: align address to 4 bytes.
*/
s32 _sdio_local_write(
PADAPTER padapter,
u32 addr,
u32 cnt,
u8 *pbuf)
{
struct intf_hdl * pintfhdl;
u8 bMacPwrCtrlOn;
s32 err;
u8 *ptmpbuf;
if(addr & 0x3)
DBG_8192C("%s, address must be 4 bytes alignment\n", __FUNCTION__);
if(cnt & 0x3)
DBG_8192C("%s, size must be the multiple of 4 \n", __FUNCTION__);
pintfhdl=&padapter->iopriv.intf;
HalSdioGetCmdAddr8703BSdio(padapter, SDIO_LOCAL_DEVICE_ID, addr, &addr);
bMacPwrCtrlOn = _FALSE;
rtw_hal_get_hwreg(padapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn);
if ((_FALSE == bMacPwrCtrlOn)
#ifdef CONFIG_LPS_LCLK
|| (_TRUE == adapter_to_pwrctl(padapter)->bFwCurrentInPSMode)
#endif
)
{
err = _sd_cmd52_write(pintfhdl, addr, cnt, pbuf);
return err;
}
ptmpbuf = (u8*)rtw_malloc(cnt);
if (!ptmpbuf)
return (-1);
_rtw_memcpy(ptmpbuf, pbuf, cnt);
err = _sd_write(pintfhdl, addr, cnt, ptmpbuf);
if (ptmpbuf)
rtw_mfree(ptmpbuf, cnt);
return err;
}
/*
* Todo: align address to 4 bytes.
*/
s32 sdio_local_write(
PADAPTER padapter,
u32 addr,
u32 cnt,
u8 *pbuf)
{
struct intf_hdl * pintfhdl;
u8 bMacPwrCtrlOn;
s32 err;
u8 *ptmpbuf;
if(addr & 0x3)
DBG_8192C("%s, address must be 4 bytes alignment\n", __FUNCTION__);
if(cnt & 0x3)
DBG_8192C("%s, size must be the multiple of 4 \n", __FUNCTION__);
pintfhdl=&padapter->iopriv.intf;
HalSdioGetCmdAddr8703BSdio(padapter, SDIO_LOCAL_DEVICE_ID, addr, &addr);
bMacPwrCtrlOn = _FALSE;
rtw_hal_get_hwreg(padapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn);
if ((_FALSE == bMacPwrCtrlOn)
#ifdef CONFIG_LPS_LCLK
|| (_TRUE == adapter_to_pwrctl(padapter)->bFwCurrentInPSMode)
#endif
)
{
err = sd_cmd52_write(pintfhdl, addr, cnt, pbuf);
return err;
}
ptmpbuf = (u8*)rtw_malloc(cnt);
if (!ptmpbuf)
return (-1);
_rtw_memcpy(ptmpbuf, pbuf, cnt);
err = sd_write(pintfhdl, addr, cnt, ptmpbuf);
if (ptmpbuf)
rtw_mfree(ptmpbuf, cnt);
return err;
}
u8 SdioLocalCmd52Read1Byte(PADAPTER padapter, u32 addr)
{
u8 val = 0;
struct intf_hdl * pintfhdl=&padapter->iopriv.intf;
HalSdioGetCmdAddr8703BSdio(padapter, SDIO_LOCAL_DEVICE_ID, addr, &addr);
sd_cmd52_read(pintfhdl, addr, 1, &val);
return val;
}
u16 SdioLocalCmd52Read2Byte(PADAPTER padapter, u32 addr)
{
u16 val = 0;
struct intf_hdl * pintfhdl=&padapter->iopriv.intf;
HalSdioGetCmdAddr8703BSdio(padapter, SDIO_LOCAL_DEVICE_ID, addr, &addr);
sd_cmd52_read(pintfhdl, addr, 2, (u8*)&val);
val = le16_to_cpu(val);
return val;
}
u32 SdioLocalCmd52Read4Byte(PADAPTER padapter, u32 addr)
{
u32 val = 0;
struct intf_hdl * pintfhdl=&padapter->iopriv.intf;
HalSdioGetCmdAddr8703BSdio(padapter, SDIO_LOCAL_DEVICE_ID, addr, &addr);
sd_cmd52_read(pintfhdl, addr, 4, (u8*)&val);
val = le32_to_cpu(val);
return val;
}
u32 SdioLocalCmd53Read4Byte(PADAPTER padapter, u32 addr)
{
u8 bMacPwrCtrlOn;
u32 val = 0;
struct intf_hdl * pintfhdl=&padapter->iopriv.intf;
HalSdioGetCmdAddr8703BSdio(padapter, SDIO_LOCAL_DEVICE_ID, addr, &addr);
bMacPwrCtrlOn = _FALSE;
rtw_hal_get_hwreg(padapter, HW_VAR_APFM_ON_MAC, &bMacPwrCtrlOn);
if ((_FALSE == bMacPwrCtrlOn)
#ifdef CONFIG_LPS_LCLK
|| (_TRUE == adapter_to_pwrctl(padapter)->bFwCurrentInPSMode)
#endif
)
{
sd_cmd52_read(pintfhdl, addr, 4, (u8*)&val);
val = le32_to_cpu(val);
}
else
val = sd_read32(pintfhdl, addr, NULL);
return val;
}
void SdioLocalCmd52Write1Byte(PADAPTER padapter, u32 addr, u8 v)
{
struct intf_hdl * pintfhdl=&padapter->iopriv.intf;
HalSdioGetCmdAddr8703BSdio(padapter, SDIO_LOCAL_DEVICE_ID, addr, &addr);
sd_cmd52_write(pintfhdl, addr, 1, &v);
}
void SdioLocalCmd52Write2Byte(PADAPTER padapter, u32 addr, u16 v)
{
struct intf_hdl * pintfhdl=&padapter->iopriv.intf;
HalSdioGetCmdAddr8703BSdio(padapter, SDIO_LOCAL_DEVICE_ID, addr, &addr);
v = cpu_to_le16(v);
sd_cmd52_write(pintfhdl, addr, 2, (u8*)&v);
}
void SdioLocalCmd52Write4Byte(PADAPTER padapter, u32 addr, u32 v)
{
struct intf_hdl * pintfhdl=&padapter->iopriv.intf;
HalSdioGetCmdAddr8703BSdio(padapter, SDIO_LOCAL_DEVICE_ID, addr, &addr);
v = cpu_to_le32(v);
sd_cmd52_write(pintfhdl, addr, 4, (u8*)&v);
}
#if 0
void
DumpLoggedInterruptHistory8703Sdio(
PADAPTER padapter
)
{
HAL_DATA_TYPE *pHalData=GET_HAL_DATA(padapter);
u4Byte DebugLevel = DBG_LOUD;
if (DBG_Var.DbgPrintIsr == 0)
return;
DBG_ChkDrvResource(padapter);
if(pHalData->InterruptLog.nISR_RX_REQUEST)
RT_TRACE(COMP_SEND|COMP_RECV, DebugLevel, ("# RX_REQUEST[%ld]\t\n", pHalData->InterruptLog.nISR_RX_REQUEST));
if(pHalData->InterruptLog.nISR_AVAL)
RT_TRACE(COMP_SEND|COMP_RECV, DebugLevel, ("# AVAL[%ld]\t\n", pHalData->InterruptLog.nISR_AVAL));
if(pHalData->InterruptLog.nISR_TXERR)
RT_TRACE(COMP_SEND|COMP_RECV, DebugLevel, ("# TXERR[%ld]\t\n", pHalData->InterruptLog.nISR_TXERR));
if(pHalData->InterruptLog.nISR_RXERR)
RT_TRACE(COMP_SEND|COMP_RECV, DebugLevel, ("# RXERR[%ld]\t\n", pHalData->InterruptLog.nISR_RXERR));
if(pHalData->InterruptLog.nISR_TXFOVW)
RT_TRACE(COMP_SEND|COMP_RECV, DebugLevel, ("# TXFOVW[%ld]\t\n", pHalData->InterruptLog.nISR_TXFOVW));
if(pHalData->InterruptLog.nISR_RXFOVW)
RT_TRACE(COMP_SEND|COMP_RECV, DebugLevel, ("# RXFOVW[%ld]\t\n", pHalData->InterruptLog.nISR_RXFOVW));
if(pHalData->InterruptLog.nISR_TXBCNOK)
RT_TRACE(COMP_SEND|COMP_RECV, DebugLevel, ("# TXBCNOK[%ld]\t\n", pHalData->InterruptLog.nISR_TXBCNOK));
if(pHalData->InterruptLog.nISR_TXBCNERR)
RT_TRACE(COMP_SEND|COMP_RECV, DebugLevel, ("# TXBCNERR[%ld]\t\n", pHalData->InterruptLog.nISR_TXBCNERR));
if(pHalData->InterruptLog.nISR_BCNERLY_INT)
RT_TRACE(COMP_SEND|COMP_RECV, DebugLevel, ("# BCNERLY_INT[%ld]\t\n", pHalData->InterruptLog.nISR_BCNERLY_INT));
if(pHalData->InterruptLog.nISR_C2HCMD)
RT_TRACE(COMP_SEND|COMP_RECV, DebugLevel, ("# C2HCMD[%ld]\t\n", pHalData->InterruptLog.nISR_C2HCMD));
if(pHalData->InterruptLog.nISR_CPWM1)
RT_TRACE(COMP_SEND|COMP_RECV, DebugLevel, ("# CPWM1L[%ld]\t\n", pHalData->InterruptLog.nISR_CPWM1));
if(pHalData->InterruptLog.nISR_CPWM2)
RT_TRACE(COMP_SEND|COMP_RECV, DebugLevel, ("# CPWM2[%ld]\t\n", pHalData->InterruptLog.nISR_CPWM2));
if(pHalData->InterruptLog.nISR_HSISR_IND)
RT_TRACE(COMP_SEND|COMP_RECV, DebugLevel, ("# HSISR_IND[%ld]\t\n", pHalData->InterruptLog.nISR_HSISR_IND));
if(pHalData->InterruptLog.nISR_GTINT3_IND)
RT_TRACE(COMP_SEND|COMP_RECV, DebugLevel, ("# GTINT3_IND[%ld]\t\n", pHalData->InterruptLog.nISR_GTINT3_IND));
if(pHalData->InterruptLog.nISR_GTINT4_IND)
RT_TRACE(COMP_SEND|COMP_RECV, DebugLevel, ("# GTINT4_IND[%ld]\t\n", pHalData->InterruptLog.nISR_GTINT4_IND));
if(pHalData->InterruptLog.nISR_PSTIMEOUT)
RT_TRACE(COMP_SEND|COMP_RECV, DebugLevel, ("# PSTIMEOUT[%ld]\t\n", pHalData->InterruptLog.nISR_PSTIMEOUT));
if(pHalData->InterruptLog.nISR_OCPINT)
RT_TRACE(COMP_SEND|COMP_RECV, DebugLevel, ("# OCPINT[%ld]\t\n", pHalData->InterruptLog.nISR_OCPINT));
if(pHalData->InterruptLog.nISR_ATIMEND)
RT_TRACE(COMP_SEND|COMP_RECV, DebugLevel, ("# ATIMEND[%ld]\t\n", pHalData->InterruptLog.nISR_ATIMEND));
if(pHalData->InterruptLog.nISR_ATIMEND_E)
RT_TRACE(COMP_SEND|COMP_RECV, DebugLevel, ("# ATIMEND_E[%ld]\t\n", pHalData->InterruptLog.nISR_ATIMEND_E));
if(pHalData->InterruptLog.nISR_CTWEND)
RT_TRACE(COMP_SEND|COMP_RECV, DebugLevel, ("# CTWEND[%ld]\t\n", pHalData->InterruptLog.nISR_CTWEND));
}
void
LogInterruptHistory8703Sdio(
PADAPTER padapter,
PRT_ISR_CONTENT pIsrContent
)
{
HAL_DATA_TYPE *pHalData=GET_HAL_DATA(padapter);
if((pHalData->IntrMask[0] & SDIO_HIMR_RX_REQUEST_MSK) &&
(pIsrContent->IntArray[0] & SDIO_HISR_RX_REQUEST))
pHalData->InterruptLog.nISR_RX_REQUEST ++;
if((pHalData->IntrMask[0] & SDIO_HIMR_AVAL_MSK) &&
(pIsrContent->IntArray[0] & SDIO_HISR_AVAL))
pHalData->InterruptLog.nISR_AVAL++;
if((pHalData->IntrMask[0] & SDIO_HIMR_TXERR_MSK) &&
(pIsrContent->IntArray[0] & SDIO_HISR_TXERR))
pHalData->InterruptLog.nISR_TXERR++;
if((pHalData->IntrMask[0] & SDIO_HIMR_RXERR_MSK) &&
(pIsrContent->IntArray[0] & SDIO_HISR_RXERR))
pHalData->InterruptLog.nISR_RXERR++;
if((pHalData->IntrMask[0] & SDIO_HIMR_TXFOVW_MSK) &&
(pIsrContent->IntArray[0] & SDIO_HISR_TXFOVW))
pHalData->InterruptLog.nISR_TXFOVW++;
if((pHalData->IntrMask[0] & SDIO_HIMR_RXFOVW_MSK) &&
(pIsrContent->IntArray[0] & SDIO_HISR_RXFOVW))
pHalData->InterruptLog.nISR_RXFOVW++;
if((pHalData->IntrMask[0] & SDIO_HIMR_TXBCNOK_MSK) &&
(pIsrContent->IntArray[0] & SDIO_HISR_TXBCNOK))
pHalData->InterruptLog.nISR_TXBCNOK++;
if((pHalData->IntrMask[0] & SDIO_HIMR_TXBCNERR_MSK) &&
(pIsrContent->IntArray[0] & SDIO_HISR_TXBCNERR))
pHalData->InterruptLog.nISR_TXBCNERR++;
if((pHalData->IntrMask[0] & SDIO_HIMR_BCNERLY_INT_MSK) &&
(pIsrContent->IntArray[0] & SDIO_HISR_BCNERLY_INT))
pHalData->InterruptLog.nISR_BCNERLY_INT ++;
if((pHalData->IntrMask[0] & SDIO_HIMR_C2HCMD_MSK) &&
(pIsrContent->IntArray[0] & SDIO_HISR_C2HCMD))
pHalData->InterruptLog.nISR_C2HCMD++;
if((pHalData->IntrMask[0] & SDIO_HIMR_CPWM1_MSK) &&
(pIsrContent->IntArray[0] & SDIO_HISR_CPWM1))
pHalData->InterruptLog.nISR_CPWM1++;
if((pHalData->IntrMask[0] & SDIO_HIMR_CPWM2_MSK) &&
(pIsrContent->IntArray[0] & SDIO_HISR_CPWM2))
pHalData->InterruptLog.nISR_CPWM2++;
if((pHalData->IntrMask[0] & SDIO_HIMR_HSISR_IND_MSK) &&
(pIsrContent->IntArray[0] & SDIO_HISR_HSISR_IND))
pHalData->InterruptLog.nISR_HSISR_IND++;
if((pHalData->IntrMask[0] & SDIO_HIMR_GTINT3_IND_MSK) &&
(pIsrContent->IntArray[0] & SDIO_HISR_GTINT3_IND))
pHalData->InterruptLog.nISR_GTINT3_IND++;
if((pHalData->IntrMask[0] & SDIO_HIMR_GTINT4_IND_MSK) &&
(pIsrContent->IntArray[0] & SDIO_HISR_GTINT4_IND))
pHalData->InterruptLog.nISR_GTINT4_IND++;
if((pHalData->IntrMask[0] & SDIO_HIMR_PSTIMEOUT_MSK) &&
(pIsrContent->IntArray[0] & SDIO_HISR_PSTIMEOUT))
pHalData->InterruptLog.nISR_PSTIMEOUT++;
if((pHalData->IntrMask[0] & SDIO_HIMR_OCPINT_MSK) &&
(pIsrContent->IntArray[0] & SDIO_HISR_OCPINT))
pHalData->InterruptLog.nISR_OCPINT++;
if((pHalData->IntrMask[0] & SDIO_HIMR_ATIMEND_MSK) &&
(pIsrContent->IntArray[0] & SDIO_HISR_ATIMEND))
pHalData->InterruptLog.nISR_ATIMEND++;
if((pHalData->IntrMask[0] & SDIO_HIMR_ATIMEND_E_MSK) &&
(pIsrContent->IntArray[0] & SDIO_HISR_ATIMEND_E))
pHalData->InterruptLog.nISR_ATIMEND_E++;
if((pHalData->IntrMask[0] & SDIO_HIMR_CTWEND_MSK) &&
(pIsrContent->IntArray[0] & SDIO_HISR_CTWEND))
pHalData->InterruptLog.nISR_CTWEND++;
}
void
DumpHardwareProfile8703Sdio(
IN PADAPTER padapter
)
{
DumpLoggedInterruptHistory8703Sdio(padapter);
}
#endif
static s32 ReadInterrupt8703BSdio(PADAPTER padapter, u32 *phisr)
{
u32 hisr, himr;
u8 val8, hisr_len;
if (phisr == NULL)
return _FALSE;
himr = GET_HAL_DATA(padapter)->sdio_himr;
// decide how many bytes need to be read
hisr_len = 0;
while (himr)
{
hisr_len++;
himr >>= 8;
}
hisr = 0;
while (hisr_len != 0)
{
hisr_len--;
val8 = SdioLocalCmd52Read1Byte(padapter, SDIO_REG_HISR+hisr_len);
hisr |= (val8 << (8*hisr_len));
}
*phisr = hisr;
return _TRUE;
}
//
// Description:
// Initialize SDIO Host Interrupt Mask configuration variables for future use.
//
// Assumption:
// Using SDIO Local register ONLY for configuration.
//
// Created by Roger, 2011.02.11.
//
void InitInterrupt8703BSdio(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData;
pHalData = GET_HAL_DATA(padapter);
pHalData->sdio_himr = (u32)( \
SDIO_HIMR_RX_REQUEST_MSK |
#ifdef CONFIG_SDIO_TX_ENABLE_AVAL_INT
SDIO_HIMR_AVAL_MSK |
#endif
// SDIO_HIMR_TXERR_MSK |
// SDIO_HIMR_RXERR_MSK |
// SDIO_HIMR_TXFOVW_MSK |
// SDIO_HIMR_RXFOVW_MSK |
// SDIO_HIMR_TXBCNOK_MSK |
// SDIO_HIMR_TXBCNERR_MSK |
// SDIO_HIMR_BCNERLY_INT_MSK |
// SDIO_HIMR_C2HCMD_MSK |
#if defined(CONFIG_LPS_LCLK) && !defined(CONFIG_DETECT_CPWM_BY_POLLING)
SDIO_HIMR_CPWM1_MSK |
// SDIO_HIMR_CPWM2_MSK |
#endif // CONFIG_LPS_LCLK && !CONFIG_DETECT_CPWM_BY_POLLING
// SDIO_HIMR_HSISR_IND_MSK |
// SDIO_HIMR_GTINT3_IND_MSK |
// SDIO_HIMR_GTINT4_IND_MSK |
// SDIO_HIMR_PSTIMEOUT_MSK |
// SDIO_HIMR_OCPINT_MSK |
// SDIO_HIMR_ATIMEND_MSK |
// SDIO_HIMR_ATIMEND_E_MSK |
// SDIO_HIMR_CTWEND_MSK |
0);
}
//
// Description:
// Initialize System Host Interrupt Mask configuration variables for future use.
//
// Created by Roger, 2011.08.03.
//
void InitSysInterrupt8703BSdio(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData;
pHalData = GET_HAL_DATA(padapter);
pHalData->SysIntrMask = ( \
// HSIMR_GPIO12_0_INT_EN |
// HSIMR_SPS_OCP_INT_EN |
// HSIMR_RON_INT_EN |
// HSIMR_PDNINT_EN |
// HSIMR_GPIO9_INT_EN |
0);
}
#ifdef CONFIG_WOWLAN
//
// Description:
// Clear corresponding SDIO Host ISR interrupt service.
//
// Assumption:
// Using SDIO Local register ONLY for configuration.
//
// Created by Roger, 2011.02.11.
//
void ClearInterrupt8703BSdio(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData;
u8 *clear;
if (rtw_is_surprise_removed(padapter))
return;
pHalData = GET_HAL_DATA(padapter);
clear = rtw_zmalloc(4);
// Clear corresponding HISR Content if needed
*(u32*)clear = cpu_to_le32(pHalData->sdio_hisr & MASK_SDIO_HISR_CLEAR);
if (*(u32*)clear)
{
// Perform write one clear operation
sdio_local_write(padapter, SDIO_REG_HISR, 4, clear);
}
rtw_mfree(clear, 4);
}
#endif
//
// Description:
// Clear corresponding system Host ISR interrupt service.
//
//
// Created by Roger, 2011.02.11.
//
void ClearSysInterrupt8703BSdio(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData;
u32 clear;
if (rtw_is_surprise_removed(padapter))
return;
pHalData = GET_HAL_DATA(padapter);
// Clear corresponding HISR Content if needed
clear = pHalData->SysIntrStatus & MASK_HSISR_CLEAR;
if (clear)
{
// Perform write one clear operation
rtw_write32(padapter, REG_HSISR, clear);
}
}
//
// Description:
// Enalbe SDIO Host Interrupt Mask configuration on SDIO local domain.
//
// Assumption:
// 1. Using SDIO Local register ONLY for configuration.
// 2. PASSIVE LEVEL
//
// Created by Roger, 2011.02.11.
//
void EnableInterrupt8703BSdio(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData;
u32 himr;
pHalData = GET_HAL_DATA(padapter);
himr = cpu_to_le32(pHalData->sdio_himr);
sdio_local_write(padapter, SDIO_REG_HIMR, 4, (u8*)&himr);
RT_TRACE(_module_hci_ops_c_, _drv_notice_,
("%s: enable SDIO HIMR=0x%08X\n", __FUNCTION__, pHalData->sdio_himr));
// Update current system IMR settings
himr = rtw_read32(padapter, REG_HSIMR);
rtw_write32(padapter, REG_HSIMR, himr|pHalData->SysIntrMask);
RT_TRACE(_module_hci_ops_c_, _drv_notice_,
("%s: enable HSIMR=0x%08X\n", __FUNCTION__, pHalData->SysIntrMask));
//
// <Roger_Notes> There are some C2H CMDs have been sent before system interrupt is enabled, e.g., C2H, CPWM.
// So we need to clear all C2H events that FW has notified, otherwise FW won't schedule any commands anymore.
// 2011.10.19.
//
rtw_write8(padapter, REG_C2HEVT_CLEAR, C2H_EVT_HOST_CLOSE);
}
//
// Description:
// Disable SDIO Host IMR configuration to mask unnecessary interrupt service.
//
// Assumption:
// Using SDIO Local register ONLY for configuration.
//
// Created by Roger, 2011.02.11.
//
void DisableInterrupt8703BSdio(PADAPTER padapter)
{
u32 himr;
himr = cpu_to_le32(SDIO_HIMR_DISABLED);
sdio_local_write(padapter, SDIO_REG_HIMR, 4, (u8*)&himr);
}
//
// Description:
// Using 0x100 to check the power status of FW.
//
// Assumption:
// Using SDIO Local register ONLY for configuration.
//
// Created by Isaac, 2013.09.10.
//
u8 CheckIPSStatus(PADAPTER padapter)
{
DBG_871X("%s(): Read 0x100=0x%02x 0x86=0x%02x\n", __func__,
rtw_read8(padapter, 0x100),rtw_read8(padapter, 0x86));
if (rtw_read8(padapter, 0x100) == 0xEA)
return _TRUE;
else
return _FALSE;
}
#ifdef CONFIG_WOWLAN
void DisableInterruptButCpwm28703BSdio(PADAPTER padapter)
{
u32 himr, tmp;
sdio_local_read(padapter, SDIO_REG_HIMR, 4, (u8*)&tmp);
DBG_871X("DisableInterruptButCpwm28703BSdio(): Read SDIO_REG_HIMR: 0x%08x\n", tmp);
himr = cpu_to_le32(SDIO_HIMR_DISABLED)|SDIO_HIMR_CPWM2_MSK;
sdio_local_write(padapter, SDIO_REG_HIMR, 4, (u8*)&himr);
sdio_local_read(padapter, SDIO_REG_HIMR, 4, (u8*)&tmp);
DBG_871X("DisableInterruptButCpwm28703BSdio(): Read again SDIO_REG_HIMR: 0x%08x\n", tmp);
}
#endif //CONFIG_WOWLAN
//
// Description:
// Update SDIO Host Interrupt Mask configuration on SDIO local domain.
//
// Assumption:
// 1. Using SDIO Local register ONLY for configuration.
// 2. PASSIVE LEVEL
//
// Created by Roger, 2011.02.11.
//
void UpdateInterruptMask8703BSdio(PADAPTER padapter, u32 AddMSR, u32 RemoveMSR)
{
HAL_DATA_TYPE *pHalData;
pHalData = GET_HAL_DATA(padapter);
if (AddMSR)
pHalData->sdio_himr |= AddMSR;
if (RemoveMSR)
pHalData->sdio_himr &= (~RemoveMSR);
DisableInterrupt8703BSdio(padapter);
EnableInterrupt8703BSdio(padapter);
}
#ifdef CONFIG_MAC_LOOPBACK_DRIVER
static void sd_recv_loopback(PADAPTER padapter, u32 size)
{
PLOOPBACKDATA ploopback;
u32 readsize, allocsize;
u8 *preadbuf;
readsize = size;
DBG_8192C("%s: read size=%d\n", __func__, readsize);
allocsize = _RND(readsize, adapter_to_dvobj(padapter)->intf_data.block_transfer_len);
ploopback = padapter->ploopback;
if (ploopback) {
ploopback->rxsize = readsize;
preadbuf = ploopback->rxbuf;
}
else {
preadbuf = rtw_malloc(allocsize);
if (preadbuf == NULL) {
DBG_8192C("%s: malloc fail size=%d\n", __func__, allocsize);
return;
}
}
// rtw_read_port(padapter, WLAN_RX0FF_DEVICE_ID, readsize, preadbuf);
sdio_read_port(&padapter->iopriv.intf, WLAN_RX0FF_DEVICE_ID, readsize, preadbuf);
if (ploopback)
_rtw_up_sema(&ploopback->sema);
else {
u32 i;
DBG_8192C("%s: drop pkt\n", __func__);
for (i = 0; i < readsize; i+=4) {
DBG_8192C("%08X", *(u32*)(preadbuf + i));
if ((i+4) & 0x1F) printk(" ");
else printk("\n");
}
printk("\n");
rtw_mfree(preadbuf, allocsize);
}
}
#endif // CONFIG_MAC_LOOPBACK_DRIVER
#ifdef CONFIG_SDIO_RX_COPY
static struct recv_buf* sd_recv_rxfifo(PADAPTER padapter, u32 size)
{
u32 readsize, ret;
u8 *preadbuf;
struct recv_priv *precvpriv;
struct recv_buf *precvbuf;
#if 0
readsize = size;
#else
// Patch for some SDIO Host 4 bytes issue
// ex. RK3188
readsize = RND4(size);
#endif
//3 1. alloc recvbuf
precvpriv = &padapter->recvpriv;
precvbuf = rtw_dequeue_recvbuf(&precvpriv->free_recv_buf_queue);
if (precvbuf == NULL) {
DBG_871X("%s: alloc recvbuf FAIL!\n", __FUNCTION__);
return NULL;
}
//3 2. alloc skb
if (precvbuf->pskb == NULL) {
SIZE_PTR tmpaddr=0;
SIZE_PTR alignment=0;
precvbuf->pskb = rtw_skb_alloc(MAX_RECVBUF_SZ + RECVBUFF_ALIGN_SZ);
if (precvbuf->pskb == NULL) {
DBG_871X("%s: alloc_skb fail! read=%d\n", __FUNCTION__, readsize);
rtw_enqueue_recvbuf(precvbuf, &precvpriv->free_recv_buf_queue);
return NULL;
}
precvbuf->pskb->dev = padapter->pnetdev;
tmpaddr = (SIZE_PTR)precvbuf->pskb->data;
alignment = tmpaddr & (RECVBUFF_ALIGN_SZ - 1);
skb_reserve(precvbuf->pskb, (RECVBUFF_ALIGN_SZ - alignment));
}
//3 3. read data from rxfifo
preadbuf = precvbuf->pskb->data;
// rtw_read_port(padapter, WLAN_RX0FF_DEVICE_ID, readsize, preadbuf);
ret = sdio_read_port(&padapter->iopriv.intf, WLAN_RX0FF_DEVICE_ID, readsize, preadbuf);
if (ret == _FAIL) {
RT_TRACE(_module_hci_ops_os_c_, _drv_err_, ("%s: read port FAIL!\n", __FUNCTION__));
rtw_enqueue_recvbuf(precvbuf, &precvpriv->free_recv_buf_queue);
return NULL;
}
//3 4. init recvbuf
precvbuf->len = size;
precvbuf->phead = precvbuf->pskb->head;
precvbuf->pdata = precvbuf->pskb->data;
skb_set_tail_pointer(precvbuf->pskb, size);
precvbuf->ptail = skb_tail_pointer(precvbuf->pskb);
precvbuf->pend = skb_end_pointer(precvbuf->pskb);
return precvbuf;
}
#else // !CONFIG_SDIO_RX_COPY
static struct recv_buf* sd_recv_rxfifo(PADAPTER padapter, u32 size)
{
u32 sdioblksize, readsize, allocsize, ret;
u8 *preadbuf;
_pkt *ppkt;
struct recv_priv *precvpriv;
struct recv_buf *precvbuf;
sdioblksize = adapter_to_dvobj(padapter)->intf_data.block_transfer_len;
#if 0
readsize = size;
#else
// Patch for some SDIO Host 4 bytes issue
// ex. RK3188
readsize = RND4(size);
#endif
//3 1. alloc skb
// align to block size
if (readsize > sdioblksize)
allocsize = _RND(readsize, sdioblksize);
else
allocsize = readsize;
ppkt = rtw_skb_alloc(allocsize);
if (ppkt == NULL) {
RT_TRACE(_module_hci_ops_os_c_, _drv_err_, ("%s: alloc_skb fail! alloc=%d read=%d\n", __FUNCTION__, allocsize, readsize));
return NULL;
}
//3 2. read data from rxfifo
preadbuf = skb_put(ppkt, size);
// rtw_read_port(padapter, WLAN_RX0FF_DEVICE_ID, readsize, preadbuf);
ret = sdio_read_port(&padapter->iopriv.intf, WLAN_RX0FF_DEVICE_ID, readsize, preadbuf);
if (ret == _FAIL) {
rtw_skb_free(ppkt);
RT_TRACE(_module_hci_ops_os_c_, _drv_err_, ("%s: read port FAIL!\n", __FUNCTION__));
return NULL;
}
//3 3. alloc recvbuf
precvpriv = &padapter->recvpriv;
precvbuf = rtw_dequeue_recvbuf(&precvpriv->free_recv_buf_queue);
if (precvbuf == NULL) {
rtw_skb_free(ppkt);
DBG_871X("%s: alloc recvbuf FAIL!\n", __FUNCTION__);
return NULL;
}
//3 4. init recvbuf
precvbuf->pskb = ppkt;
precvbuf->len = ppkt->len;
precvbuf->phead = ppkt->head;
precvbuf->pdata = ppkt->data;
precvbuf->ptail = skb_tail_pointer(precvbuf->pskb);
precvbuf->pend = skb_end_pointer(precvbuf->pskb);
return precvbuf;
}
#endif // !CONFIG_SDIO_RX_COPY
static void sd_rxhandler(PADAPTER padapter, struct recv_buf *precvbuf)
{
struct recv_priv *precvpriv;
_queue *ppending_queue;
precvpriv = &padapter->recvpriv;
ppending_queue = &precvpriv->recv_buf_pending_queue;
//3 1. enqueue recvbuf
rtw_enqueue_recvbuf(precvbuf, ppending_queue);
//3 2. schedule tasklet
#ifdef PLATFORM_LINUX
tasklet_schedule(&precvpriv->recv_tasklet);
#endif
}
void sd_int_dpc(PADAPTER padapter)
{
PHAL_DATA_TYPE phal;
struct dvobj_priv *dvobj;
struct intf_hdl * pintfhdl=&padapter->iopriv.intf;
struct pwrctrl_priv *pwrctl;
phal = GET_HAL_DATA(padapter);
dvobj = adapter_to_dvobj(padapter);
pwrctl = dvobj_to_pwrctl(dvobj);
#ifdef CONFIG_SDIO_TX_ENABLE_AVAL_INT
if (phal->sdio_hisr & SDIO_HISR_AVAL)
{
//_irqL irql;
u8 freepage[4];
_sdio_local_read(padapter, SDIO_REG_FREE_TXPG, 4, freepage);
//_enter_critical_bh(&phal->SdioTxFIFOFreePageLock, &irql);
//_rtw_memcpy(phal->SdioTxFIFOFreePage, freepage, 4);
//_exit_critical_bh(&phal->SdioTxFIFOFreePageLock, &irql);
//DBG_871X("SDIO_HISR_AVAL, Tx Free Page = 0x%x%x%x%x\n",
// freepage[0],
// freepage[1],
// freepage[2],
// freepage[3]);
_rtw_up_sema(&(padapter->xmitpriv.xmit_sema));
}
#endif
if (phal->sdio_hisr & SDIO_HISR_CPWM1)
{
struct reportpwrstate_parm report;
#ifdef CONFIG_LPS_RPWM_TIMER
u8 bcancelled;
_cancel_timer(&(pwrctl->pwr_rpwm_timer), &bcancelled);
#endif // CONFIG_LPS_RPWM_TIMER
report.state = SdioLocalCmd52Read1Byte(padapter, SDIO_REG_HCPWM1_8703B);
#ifdef CONFIG_LPS_LCLK
//cpwm_int_hdl(padapter, &report);
_set_workitem(&(pwrctl->cpwm_event));
#endif
}
if (phal->sdio_hisr & SDIO_HISR_TXERR)
{
u8 *status;
u32 addr;
status = rtw_malloc(4);
if (status)
{
addr = REG_TXDMA_STATUS;
HalSdioGetCmdAddr8703BSdio(padapter, WLAN_IOREG_DEVICE_ID, addr, &addr);
_sd_read(pintfhdl, addr, 4, status);
_sd_write(pintfhdl, addr, 4, status);
DBG_8192C("%s: SDIO_HISR_TXERR (0x%08x)\n", __func__, le32_to_cpu(*(u32*)status));
rtw_mfree(status, 4);
} else {
DBG_8192C("%s: SDIO_HISR_TXERR, but can't allocate memory to read status!\n", __func__);
}
}
if (phal->sdio_hisr & SDIO_HISR_TXBCNOK)
{
DBG_8192C("%s: SDIO_HISR_TXBCNOK\n", __func__);
}
if (phal->sdio_hisr & SDIO_HISR_TXBCNERR)
{
DBG_8192C("%s: SDIO_HISR_TXBCNERR\n", __func__);
}
#ifndef CONFIG_C2H_PACKET_EN
if (phal->sdio_hisr & SDIO_HISR_C2HCMD)
{
struct c2h_evt_hdr_88xx *c2h_evt;
DBG_8192C("%s: C2H Command\n", __func__);
if ((c2h_evt = (struct c2h_evt_hdr_88xx*)rtw_zmalloc(16)) != NULL) {
if (rtw_hal_c2h_evt_read(padapter, (u8 *)c2h_evt) == _SUCCESS) {
if (c2h_id_filter_ccx_8703b((u8 *)c2h_evt)) {
/* Handle CCX report here */
rtw_hal_c2h_handler(padapter, (u8 *)c2h_evt);
rtw_mfree((u8*)c2h_evt, 16);
} else {
rtw_c2h_wk_cmd(padapter, (u8 *)c2h_evt);
}
}
} else {
/* Error handling for malloc fail */
if (rtw_cbuf_push(padapter->evtpriv.c2h_queue, (void*)NULL) != _SUCCESS)
DBG_871X("%s rtw_cbuf_push fail\n", __func__);
_set_workitem(&padapter->evtpriv.c2h_wk);
}
}
#endif
if (phal->sdio_hisr & SDIO_HISR_RXFOVW)
{
DBG_8192C("%s: Rx Overflow\n", __func__);
}
if (phal->sdio_hisr & SDIO_HISR_RXERR)
{
DBG_8192C("%s: Rx Error\n", __func__);
}
if (phal->sdio_hisr & SDIO_HISR_RX_REQUEST)
{
struct recv_buf *precvbuf;
int alloc_fail_time=0;
u32 hisr;
// DBG_8192C("%s: RX Request, size=%d\n", __func__, phal->SdioRxFIFOSize);
phal->sdio_hisr ^= SDIO_HISR_RX_REQUEST;
do {
phal->SdioRxFIFOSize = SdioLocalCmd52Read2Byte(padapter, SDIO_REG_RX0_REQ_LEN);
if (phal->SdioRxFIFOSize != 0)
{
#ifdef CONFIG_MAC_LOOPBACK_DRIVER
sd_recv_loopback(padapter, phal->SdioRxFIFOSize);
#else
precvbuf = sd_recv_rxfifo(padapter, phal->SdioRxFIFOSize);
if (precvbuf)
sd_rxhandler(padapter, precvbuf);
else
{
alloc_fail_time++;
DBG_871X("%s: recv fail!(time=%d)\n", __func__, alloc_fail_time);
if (alloc_fail_time >= 10)
break;
}
phal->SdioRxFIFOSize = 0;
#endif
}
else
break;
hisr = 0;
ReadInterrupt8703BSdio(padapter, &hisr);
hisr &= SDIO_HISR_RX_REQUEST;
if (!hisr)
break;
} while (1);
if (alloc_fail_time == 10)
DBG_871X("%s: exit because recv failed more than 10 times!\n", __func__);
}
}
void sd_int_hdl(PADAPTER padapter)
{
PHAL_DATA_TYPE phal;
if (RTW_CANNOT_RUN(padapter))
return;
phal = GET_HAL_DATA(padapter);
phal->sdio_hisr = 0;
ReadInterrupt8703BSdio(padapter, &phal->sdio_hisr);
if (phal->sdio_hisr & phal->sdio_himr)
{
u32 v32;
phal->sdio_hisr &= phal->sdio_himr;
// clear HISR
v32 = phal->sdio_hisr & MASK_SDIO_HISR_CLEAR;
if (v32) {
SdioLocalCmd52Write4Byte(padapter, SDIO_REG_HISR, v32);
}
sd_int_dpc(padapter);
} else {
RT_TRACE(_module_hci_ops_c_, _drv_err_,
("%s: HISR(0x%08x) and HIMR(0x%08x) not match!\n",
__FUNCTION__, phal->sdio_hisr, phal->sdio_himr));
}
}
//
// Description:
// Query SDIO Local register to query current the number of Free TxPacketBuffer page.
//
// Assumption:
// 1. Running at PASSIVE_LEVEL
// 2. RT_TX_SPINLOCK is NOT acquired.
//
// Created by Roger, 2011.01.28.
//
u8 HalQueryTxBufferStatus8703BSdio(PADAPTER padapter)
{
PHAL_DATA_TYPE phal;
u32 NumOfFreePage;
//_irqL irql;
phal = GET_HAL_DATA(padapter);
NumOfFreePage = SdioLocalCmd53Read4Byte(padapter, SDIO_REG_FREE_TXPG);
//_enter_critical_bh(&phal->SdioTxFIFOFreePageLock, &irql);
_rtw_memcpy(phal->SdioTxFIFOFreePage, &NumOfFreePage, 4);
RT_TRACE(_module_hci_ops_c_, _drv_notice_,
("%s: Free page for HIQ(%#x),MIDQ(%#x),LOWQ(%#x),PUBQ(%#x)\n",
__FUNCTION__,
phal->SdioTxFIFOFreePage[HI_QUEUE_IDX],
phal->SdioTxFIFOFreePage[MID_QUEUE_IDX],
phal->SdioTxFIFOFreePage[LOW_QUEUE_IDX],
phal->SdioTxFIFOFreePage[PUBLIC_QUEUE_IDX]));
//_exit_critical_bh(&phal->SdioTxFIFOFreePageLock, &irql);
return _TRUE;
}
//
// Description:
// Query SDIO Local register to get the current number of TX OQT Free Space.
//
u8 HalQueryTxOQTBufferStatus8703BSdio(PADAPTER padapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
pHalData->SdioTxOQTFreeSpace = SdioLocalCmd52Read1Byte(padapter, SDIO_REG_OQT_FREE_PG);
return _TRUE;
}
#if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
u8 RecvOnePkt(PADAPTER padapter, u32 size)
{
struct recv_buf *precvbuf;
struct dvobj_priv *psddev;
PSDIO_DATA psdio_data;
struct sdio_func *func;
u8 res = _FALSE;
DBG_871X("+%s: size: %d+\n", __func__, size);
if (padapter == NULL) {
DBG_871X(KERN_ERR "%s: padapter is NULL!\n", __func__);
return _FALSE;
}
psddev = adapter_to_dvobj(padapter);
psdio_data = &psddev->intf_data;
func = psdio_data->func;
if(size) {
sdio_claim_host(func);
precvbuf = sd_recv_rxfifo(padapter, size);
if (precvbuf) {
//printk("Completed Recv One Pkt.\n");
sd_rxhandler(padapter, precvbuf);
res = _TRUE;
}else{
res = _FALSE;
}
sdio_release_host(func);
}
DBG_871X("-%s-\n", __func__);
return res;
}
#endif //CONFIG_WOWLAN