/****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #define _HAL_COM_PHYCFG_C_ #include #include /* * rtw_regsty_get_target_tx_power - * * Return dBm or -1 for undefined */ s8 rtw_regsty_get_target_tx_power( IN PADAPTER Adapter, IN u8 Band, IN u8 RfPath, IN RATE_SECTION RateSection ) { struct registry_priv *regsty = adapter_to_regsty(Adapter); s8 value = 0; if (RfPath > RF_PATH_D) { DBG_871X_LEVEL(_drv_always_, "%s invalid RfPath:%d\n", __func__, RfPath); return -1; } if (Band != BAND_ON_2_4G #ifdef CONFIG_IEEE80211_BAND_5GHZ && Band != BAND_ON_5G #endif ) { DBG_871X_LEVEL(_drv_always_, "%s invalid Band:%d\n", __func__, Band); return -1; } if (RateSection >= RATE_SECTION_NUM #ifdef CONFIG_IEEE80211_BAND_5GHZ || (Band == BAND_ON_5G && RateSection == CCK) #endif ) { DBG_871X_LEVEL(_drv_always_, "%s invalid RateSection:%d in %sG, RfPath:%d\n", __func__ , RateSection, (Band == BAND_ON_2_4G) ? "2.4" : "5", RfPath); return -1; } if (Band == BAND_ON_2_4G) value = regsty->target_tx_pwr_2g[RfPath][RateSection]; #ifdef CONFIG_IEEE80211_BAND_5GHZ else /* BAND_ON_5G */ value = regsty->target_tx_pwr_5g[RfPath][RateSection - 1]; #endif return value; } bool rtw_regsty_chk_target_tx_power_valid(_adapter *adapter) { struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter); HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); int path, tx_num, band, rs; s8 target; for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) { if (!hal_is_band_support(adapter, band)) continue; for (path = 0; path < RF_PATH_MAX; path++) { if (path >= hal_data->NumTotalRFPath) break; for (rs = 0; rs < RATE_SECTION_NUM; rs++) { tx_num = rate_section_to_tx_num(rs); if (tx_num >= hal_spec->nss_num) continue; if (band == BAND_ON_5G && IS_CCK_RATE_SECTION(rs)) continue; if (IS_VHT_RATE_SECTION(rs) && !IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(adapter)) continue; target = rtw_regsty_get_target_tx_power(adapter, band, path, rs); if (target == -1) return _FALSE; } } } return _TRUE; } /* * PHY_GetTxPowerByRateBase - * * Return 2 times of dBm */ u8 PHY_GetTxPowerByRateBase( IN PADAPTER Adapter, IN u8 Band, IN u8 RfPath, IN u8 TxNum, IN RATE_SECTION RateSection ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 value = 0; if (RfPath > RF_PATH_D) { DBG_871X_LEVEL(_drv_always_, "%s invalid RfPath:%d\n", __func__, RfPath); return 0; } if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) { DBG_871X_LEVEL(_drv_always_, "%s invalid Band:%d\n", __func__, Band); return 0; } if (RateSection >= RATE_SECTION_NUM || (Band == BAND_ON_5G && RateSection == CCK) ) { DBG_871X_LEVEL(_drv_always_, "%s invalid RateSection:%d in %sG, RfPath:%d, TxNum:%d\n", __func__ , RateSection, (Band == BAND_ON_2_4G) ? "2.4" : "5", RfPath, TxNum); return 0; } if (Band == BAND_ON_2_4G) value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][RateSection]; else /* BAND_ON_5G */ value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][RateSection - 1]; return value; } VOID phy_SetTxPowerByRateBase( IN PADAPTER Adapter, IN u8 Band, IN u8 RfPath, IN RATE_SECTION RateSection, IN u8 TxNum, IN u8 Value ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); if (RfPath > RF_PATH_D) { DBG_871X_LEVEL(_drv_always_, "%s invalid RfPath:%d\n", __func__, RfPath); return; } if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) { DBG_871X_LEVEL(_drv_always_, "%s invalid Band:%d\n", __func__, Band); return; } if (RateSection >= RATE_SECTION_NUM || (Band == BAND_ON_5G && RateSection == CCK) ) { DBG_871X_LEVEL(_drv_always_, "%s invalid RateSection:%d in %sG, RfPath:%d, TxNum:%d\n", __func__ , RateSection, (Band == BAND_ON_2_4G) ? "2.4" : "5", RfPath, TxNum); return; } if (Band == BAND_ON_2_4G) pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][RateSection] = Value; else /* BAND_ON_5G */ pHalData->TxPwrByRateBase5G[RfPath][TxNum][RateSection - 1] = Value; } /* * phy_get_target_tx_power - * * Return 2 times of dBm */ u8 phy_get_target_tx_power( IN PADAPTER Adapter, IN u8 Band, IN u8 RfPath, IN RATE_SECTION RateSection ) { struct registry_priv *regsty = adapter_to_regsty(Adapter); s16 target_power; if (phy_is_tx_power_by_rate_needed(Adapter) == _FALSE && regsty->target_tx_pwr_valid == _TRUE) target_power = 2 * rtw_regsty_get_target_tx_power(Adapter, Band, RfPath, RateSection); else target_power = PHY_GetTxPowerByRateBase(Adapter, Band, RfPath, rate_section_to_tx_num(RateSection), RateSection); return target_power; } #ifdef TX_POWER_BY_RATE_OLD VOID phy_StoreTxPowerByRateBaseOld( IN PADAPTER pAdapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA( pAdapter ); u16 rawValue = 0; u8 base = 0; u8 path = 0; rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][7] >> 8 ) & 0xFF; base = ( rawValue >> 4 ) * 10 + ( rawValue & 0xF ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, CCK, RF_1TX, base ); rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][1] >> 24 ) & 0xFF; base = ( rawValue >> 4 ) * 10 + ( rawValue & 0xF ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, OFDM, RF_1TX, base ); rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][3] >> 24 ) & 0xFF; base = ( rawValue >> 4 ) * 10 + ( rawValue & 0xF ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, HT_MCS0_MCS7, RF_1TX, base ); rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][5] >> 24 ) & 0xFF; base = ( rawValue >> 4) * 10 + ( rawValue & 0xF ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, HT_MCS8_MCS15, RF_2TX, base ); rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][7] & 0xFF ); base = ( rawValue >> 4 ) * 10 + ( rawValue & 0xF ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, CCK, RF_1TX, base ); rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][9] >> 24 ) & 0xFF; base = ( rawValue >> 4 ) * 10 + ( rawValue & 0xF ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, OFDM, RF_1TX, base ); rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][11] >> 24 ) & 0xFF; base = ( rawValue >> 4 ) * 10 + ( rawValue & 0xF ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, HT_MCS0_MCS7, RF_1TX, base ); rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][13] >> 24 ) & 0xFF; base = ( rawValue >> 4 ) * 10 + ( rawValue & 0xF ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, HT_MCS8_MCS15, RF_2TX, base ); } #endif /* TX_POWER_BY_RATE_OLD */ VOID phy_StoreTxPowerByRateBase( IN PADAPTER pAdapter ) { struct hal_spec_t *hal_spec = GET_HAL_SPEC(pAdapter); u8 rate_sec_base[RATE_SECTION_NUM] = { MGN_11M, MGN_54M, MGN_MCS7, MGN_MCS15, MGN_MCS23, MGN_MCS31, MGN_VHT1SS_MCS7, MGN_VHT2SS_MCS7, MGN_VHT3SS_MCS7, MGN_VHT4SS_MCS7, }; u8 band, path, rs, tx_num, base, index; for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) { for (path = RF_PATH_A; path < RF_PATH_MAX; path++) { /* TODO: 8814A's NumTotalRFPath differs at probe(3) and up(4), need fixed if (path >= hal_data->NumTotalRFPath) break; */ for (rs = 0; rs < RATE_SECTION_NUM; rs++) { tx_num = rate_section_to_tx_num(rs); if (tx_num >= hal_spec->nss_num) continue; if (band == BAND_ON_5G && IS_CCK_RATE_SECTION(rs)) continue; base = _PHY_GetTxPowerByRate(pAdapter, band, path, tx_num, rate_sec_base[rs]); phy_SetTxPowerByRateBase(pAdapter, band, path, rs, tx_num, base); } } } } #ifdef TX_POWER_BY_RATE_OLD u8 PHY_GetRateSectionIndexOfTxPowerByRate( IN PADAPTER pAdapter, IN u32 RegAddr, IN u32 BitMask ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA( pAdapter ); PDM_ODM_T pDM_Odm = &pHalData->odmpriv; u8 index = 0; if ( pDM_Odm->PhyRegPgVersion == 0 ) { switch ( RegAddr ) { case rTxAGC_A_Rate18_06: index = 0; break; case rTxAGC_A_Rate54_24: index = 1; break; case rTxAGC_A_CCK1_Mcs32: index = 6; break; case rTxAGC_B_CCK11_A_CCK2_11: if ( BitMask == bMaskH3Bytes ) index = 7; else if ( BitMask == 0x000000ff ) index = 15; break; case rTxAGC_A_Mcs03_Mcs00: index = 2; break; case rTxAGC_A_Mcs07_Mcs04: index = 3; break; case rTxAGC_A_Mcs11_Mcs08: index = 4; break; case rTxAGC_A_Mcs15_Mcs12: index = 5; break; case rTxAGC_B_Rate18_06: index = 8; break; case rTxAGC_B_Rate54_24: index = 9; break; case rTxAGC_B_CCK1_55_Mcs32: index = 14; break; case rTxAGC_B_Mcs03_Mcs00: index = 10; break; case rTxAGC_B_Mcs07_Mcs04: index = 11; break; case rTxAGC_B_Mcs11_Mcs08: index = 12; break; case rTxAGC_B_Mcs15_Mcs12: index = 13; break; default: DBG_871X("Invalid RegAddr 0x3%x in PHY_GetRateSectionIndexOfTxPowerByRate()", RegAddr ); break; }; } return index; } #endif /* TX_POWER_BY_RATE_OLD */ VOID PHY_GetRateValuesOfTxPowerByRate( IN PADAPTER pAdapter, IN u32 RegAddr, IN u32 BitMask, IN u32 Value, OUT u8 *Rate, OUT s8 *PwrByRateVal, OUT u8 *RateNum ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA( pAdapter ); PDM_ODM_T pDM_Odm = &pHalData->odmpriv; u8 index = 0, i = 0; switch ( RegAddr ) { case rTxAGC_A_Rate18_06: case rTxAGC_B_Rate18_06: Rate[0] = MGN_6M; Rate[1] = MGN_9M; Rate[2] = MGN_12M; Rate[3] = MGN_18M; for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case rTxAGC_A_Rate54_24: case rTxAGC_B_Rate54_24: Rate[0] = MGN_24M; Rate[1] = MGN_36M; Rate[2] = MGN_48M; Rate[3] = MGN_54M; for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case rTxAGC_A_CCK1_Mcs32: Rate[0] = MGN_1M; PwrByRateVal[0] = ( s8 ) ( ( ( ( Value >> (8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> 8 ) & 0xF ) ); *RateNum = 1; break; case rTxAGC_B_CCK11_A_CCK2_11: if ( BitMask == 0xffffff00 ) { Rate[0] = MGN_2M; Rate[1] = MGN_5_5M; Rate[2] = MGN_11M; for ( i = 1; i < 4; ++ i ) { PwrByRateVal[i - 1] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 3; } else if ( BitMask == 0x000000ff ) { Rate[0] = MGN_11M; PwrByRateVal[0] = ( s8 ) ( ( ( ( Value >> 4 ) & 0xF ) ) * 10 + ( Value & 0xF ) ); *RateNum = 1; } break; case rTxAGC_A_Mcs03_Mcs00: case rTxAGC_B_Mcs03_Mcs00: Rate[0] = MGN_MCS0; Rate[1] = MGN_MCS1; Rate[2] = MGN_MCS2; Rate[3] = MGN_MCS3; for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case rTxAGC_A_Mcs07_Mcs04: case rTxAGC_B_Mcs07_Mcs04: Rate[0] = MGN_MCS4; Rate[1] = MGN_MCS5; Rate[2] = MGN_MCS6; Rate[3] = MGN_MCS7; for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case rTxAGC_A_Mcs11_Mcs08: case rTxAGC_B_Mcs11_Mcs08: Rate[0] = MGN_MCS8; Rate[1] = MGN_MCS9; Rate[2] = MGN_MCS10; Rate[3] = MGN_MCS11; for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case rTxAGC_A_Mcs15_Mcs12: case rTxAGC_B_Mcs15_Mcs12: Rate[0] = MGN_MCS12; Rate[1] = MGN_MCS13; Rate[2] = MGN_MCS14; Rate[3] = MGN_MCS15; for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case rTxAGC_B_CCK1_55_Mcs32: Rate[0] = MGN_1M; Rate[1] = MGN_2M; Rate[2] = MGN_5_5M; for ( i = 1; i < 4; ++ i ) { PwrByRateVal[i - 1] = ( s8 ) ( ( ( ( Value >> ( i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> ( i * 8) ) & 0xF ) ); } *RateNum = 3; break; case 0xC20: case 0xE20: case 0x1820: case 0x1a20: Rate[0] = MGN_1M; Rate[1] = MGN_2M; Rate[2] = MGN_5_5M; Rate[3] = MGN_11M; for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xC24: case 0xE24: case 0x1824: case 0x1a24: Rate[0] = MGN_6M; Rate[1] = MGN_9M; Rate[2] = MGN_12M; Rate[3] = MGN_18M; for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xC28: case 0xE28: case 0x1828: case 0x1a28: Rate[0] = MGN_24M; Rate[1] = MGN_36M; Rate[2] = MGN_48M; Rate[3] = MGN_54M; for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xC2C: case 0xE2C: case 0x182C: case 0x1a2C: Rate[0] = MGN_MCS0; Rate[1] = MGN_MCS1; Rate[2] = MGN_MCS2; Rate[3] = MGN_MCS3; for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xC30: case 0xE30: case 0x1830: case 0x1a30: Rate[0] = MGN_MCS4; Rate[1] = MGN_MCS5; Rate[2] = MGN_MCS6; Rate[3] = MGN_MCS7; for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xC34: case 0xE34: case 0x1834: case 0x1a34: Rate[0] = MGN_MCS8; Rate[1] = MGN_MCS9; Rate[2] = MGN_MCS10; Rate[3] = MGN_MCS11; for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xC38: case 0xE38: case 0x1838: case 0x1a38: Rate[0] = MGN_MCS12; Rate[1] = MGN_MCS13; Rate[2] = MGN_MCS14; Rate[3] = MGN_MCS15; for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xC3C: case 0xE3C: case 0x183C: case 0x1a3C: Rate[0] = MGN_VHT1SS_MCS0; Rate[1] = MGN_VHT1SS_MCS1; Rate[2] = MGN_VHT1SS_MCS2; Rate[3] = MGN_VHT1SS_MCS3; for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xC40: case 0xE40: case 0x1840: case 0x1a40: Rate[0] = MGN_VHT1SS_MCS4; Rate[1] = MGN_VHT1SS_MCS5; Rate[2] = MGN_VHT1SS_MCS6; Rate[3] = MGN_VHT1SS_MCS7; for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xC44: case 0xE44: case 0x1844: case 0x1a44: Rate[0] = MGN_VHT1SS_MCS8; Rate[1] = MGN_VHT1SS_MCS9; Rate[2] = MGN_VHT2SS_MCS0; Rate[3] = MGN_VHT2SS_MCS1; for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xC48: case 0xE48: case 0x1848: case 0x1a48: Rate[0] = MGN_VHT2SS_MCS2; Rate[1] = MGN_VHT2SS_MCS3; Rate[2] = MGN_VHT2SS_MCS4; Rate[3] = MGN_VHT2SS_MCS5; for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xC4C: case 0xE4C: case 0x184C: case 0x1a4C: Rate[0] = MGN_VHT2SS_MCS6; Rate[1] = MGN_VHT2SS_MCS7; Rate[2] = MGN_VHT2SS_MCS8; Rate[3] = MGN_VHT2SS_MCS9; for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xCD8: case 0xED8: case 0x18D8: case 0x1aD8: Rate[0] = MGN_MCS16; Rate[1] = MGN_MCS17; Rate[2] = MGN_MCS18; Rate[3] = MGN_MCS19; for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xCDC: case 0xEDC: case 0x18DC: case 0x1aDC: Rate[0] = MGN_MCS20; Rate[1] = MGN_MCS21; Rate[2] = MGN_MCS22; Rate[3] = MGN_MCS23; for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xCE0: case 0xEE0: case 0x18E0: case 0x1aE0: Rate[0] = MGN_VHT3SS_MCS0; Rate[1] = MGN_VHT3SS_MCS1; Rate[2] = MGN_VHT3SS_MCS2; Rate[3] = MGN_VHT3SS_MCS3; for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xCE4: case 0xEE4: case 0x18E4: case 0x1aE4: Rate[0] = MGN_VHT3SS_MCS4; Rate[1] = MGN_VHT3SS_MCS5; Rate[2] = MGN_VHT3SS_MCS6; Rate[3] = MGN_VHT3SS_MCS7; for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xCE8: case 0xEE8: case 0x18E8: case 0x1aE8: Rate[0] = MGN_VHT3SS_MCS8; Rate[1] = MGN_VHT3SS_MCS9; for ( i = 0; i < 2; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 2; break; default: DBG_871X_LEVEL(_drv_always_, "Invalid RegAddr 0x%x in %s()\n", RegAddr, __func__); break; }; } void PHY_StoreTxPowerByRateNew( IN PADAPTER pAdapter, IN u32 Band, IN u32 RfPath, IN u32 TxNum, IN u32 RegAddr, IN u32 BitMask, IN u32 Data ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); u8 i = 0, rates[4] = {0}, rateNum = 0; s8 PwrByRateVal[4] = {0}; PHY_GetRateValuesOfTxPowerByRate(pAdapter, RegAddr, BitMask, Data, rates, PwrByRateVal, &rateNum); if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) { DBG_871X_LEVEL(_drv_always_, "Invalid Band %d\n", Band); return; } if (RfPath > ODM_RF_PATH_D) { DBG_871X_LEVEL(_drv_always_, "Invalid RfPath %d\n", RfPath); return; } if (TxNum > ODM_RF_PATH_D) { DBG_871X_LEVEL(_drv_always_, "Invalid TxNum %d\n", TxNum); return; } for (i = 0; i < rateNum; ++i) { u8 rate_idx = PHY_GetRateIndexOfTxPowerByRate(rates[i]); if (IS_1T_RATE(rates[i])) pHalData->TxPwrByRateOffset[Band][RfPath][RF_1TX][rate_idx] = PwrByRateVal[i]; else if (IS_2T_RATE(rates[i])) pHalData->TxPwrByRateOffset[Band][RfPath][RF_2TX][rate_idx] = PwrByRateVal[i]; else if (IS_3T_RATE(rates[i])) pHalData->TxPwrByRateOffset[Band][RfPath][RF_3TX][rate_idx] = PwrByRateVal[i]; else if (IS_4T_RATE(rates[i])) pHalData->TxPwrByRateOffset[Band][RfPath][RF_4TX][rate_idx] = PwrByRateVal[i]; else rtw_warn_on(1); } } #ifdef TX_POWER_BY_RATE_OLD void PHY_StoreTxPowerByRateOld( IN PADAPTER pAdapter, IN u32 RegAddr, IN u32 BitMask, IN u32 Data ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); u8 index = PHY_GetRateSectionIndexOfTxPowerByRate( pAdapter, RegAddr, BitMask ); pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][index] = Data; //DBG_871X("MCSTxPowerLevelOriginalOffset[%d][0] = 0x%x\n", pHalData->pwrGroupCnt, // pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][0]); } #endif /* TX_POWER_BY_RATE_OLD */ VOID PHY_InitTxPowerByRate( IN PADAPTER pAdapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); u8 band = 0, rfPath = 0, TxNum = 0, rate = 0, i = 0, j = 0; if ( IS_HARDWARE_TYPE_8188E( pAdapter ) ) { for ( i = 0; i < MAX_PG_GROUP; ++i ) for ( j = 0; j < 16; ++j ) pHalData->MCSTxPowerLevelOriginalOffset[i][j] = 0; } else { for ( band = BAND_ON_2_4G; band <= BAND_ON_5G; ++band ) for ( rfPath = 0; rfPath < TX_PWR_BY_RATE_NUM_RF; ++rfPath ) for ( TxNum = 0; TxNum < TX_PWR_BY_RATE_NUM_RF; ++TxNum ) for ( rate = 0; rate < TX_PWR_BY_RATE_NUM_RATE; ++rate ) pHalData->TxPwrByRateOffset[band][rfPath][TxNum][rate] = 0; } } VOID PHY_StoreTxPowerByRate( IN PADAPTER pAdapter, IN u32 Band, IN u32 RfPath, IN u32 TxNum, IN u32 RegAddr, IN u32 BitMask, IN u32 Data ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); PDM_ODM_T pDM_Odm = &pHalData->odmpriv; if ( pDM_Odm->PhyRegPgVersion > 0 ) { PHY_StoreTxPowerByRateNew( pAdapter, Band, RfPath, TxNum, RegAddr, BitMask, Data ); } #ifdef TX_POWER_BY_RATE_OLD else if ( pDM_Odm->PhyRegPgVersion == 0 ) { PHY_StoreTxPowerByRateOld( pAdapter, RegAddr, BitMask, Data ); if ( RegAddr == rTxAGC_A_Mcs15_Mcs12 && pHalData->rf_type == RF_1T1R ) pHalData->pwrGroupCnt++; else if ( RegAddr == rTxAGC_B_Mcs15_Mcs12 && pHalData->rf_type != RF_1T1R ) pHalData->pwrGroupCnt++; } #endif else DBG_871X("Invalid PHY_REG_PG.txt version %d\n", pDM_Odm->PhyRegPgVersion ); } #ifdef TX_POWER_BY_RATE_OLD VOID phy_ConvertTxPowerByRateByBase( IN u32* pData, IN u8 Start, IN u8 End, IN u8 BaseValue ) { s8 i = 0; u8 TempValue = 0; u32 TempData = 0; for ( i = 3; i >= 0; --i ) { if ( i >= Start && i <= End ) { // Get the exact value TempValue = ( u8 ) ( *pData >> ( i * 8 ) ) & 0xF; TempValue += ( ( u8 ) ( ( *pData >> ( i * 8 + 4 ) ) & 0xF ) ) * 10; // Change the value to a relative value TempValue = ( TempValue > BaseValue ) ? TempValue - BaseValue : BaseValue - TempValue; } else { TempValue = ( u8 ) ( *pData >> ( i * 8 ) ) & 0xFF; } TempData <<= 8; TempData |= TempValue; } *pData = TempData; } VOID PHY_ConvertTxPowerByRateInDbmToRelativeValuesOld( IN PADAPTER pAdapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA( pAdapter ); u8 base = 0; //DBG_871X("===>PHY_ConvertTxPowerByRateInDbmToRelativeValuesOld()\n" ); // CCK base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, RF_1TX, CCK ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][6] ), 1, 1, base ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][7] ), 1, 3, base ); // OFDM base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, RF_1TX, OFDM ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][0] ), 0, 3, base ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][1] ), 0, 3, base ); // HT MCS0~7 base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, RF_1TX, HT_MCS0_MCS7 ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][2] ), 0, 3, base ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][3] ), 0, 3, base ); // HT MCS8~15 base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, RF_2TX, HT_MCS8_MCS15 ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][4] ), 0, 3, base ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][5] ), 0, 3, base ); // CCK base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, RF_1TX, CCK ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][14] ), 1, 3, base ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][15] ), 0, 0, base ); // OFDM base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, RF_1TX, OFDM ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][8] ), 0, 3, base ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][9] ), 0, 3, base ); // HT MCS0~7 base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, RF_1TX, HT_MCS0_MCS7 ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][10] ), 0, 3, base ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][11] ), 0, 3, base ); // HT MCS8~15 base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, RF_2TX, HT_MCS8_MCS15 ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][12] ), 0, 3, base ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][13] ), 0, 3, base ); //DBG_871X("<===PHY_ConvertTxPowerByRateInDbmToRelativeValuesOld()\n" ); } #endif /* TX_POWER_BY_RATE_OLD */ VOID phy_ConvertTxPowerByRateInDbmToRelativeValues( IN PADAPTER pAdapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA( pAdapter ); u8 base = 0, i = 0, value = 0, band = 0, path = 0, txNum = 0, index = 0, startIndex = 0, endIndex = 0; u8 cckRates[4] = {MGN_1M, MGN_2M, MGN_5_5M, MGN_11M}, ofdmRates[8] = {MGN_6M, MGN_9M, MGN_12M, MGN_18M, MGN_24M, MGN_36M, MGN_48M, MGN_54M}, mcs0_7Rates[8] = {MGN_MCS0, MGN_MCS1, MGN_MCS2, MGN_MCS3, MGN_MCS4, MGN_MCS5, MGN_MCS6, MGN_MCS7}, mcs8_15Rates[8] = {MGN_MCS8, MGN_MCS9, MGN_MCS10, MGN_MCS11, MGN_MCS12, MGN_MCS13, MGN_MCS14, MGN_MCS15}, mcs16_23Rates[8] = {MGN_MCS16, MGN_MCS17, MGN_MCS18, MGN_MCS19, MGN_MCS20, MGN_MCS21, MGN_MCS22, MGN_MCS23}, vht1ssRates[10] = {MGN_VHT1SS_MCS0, MGN_VHT1SS_MCS1, MGN_VHT1SS_MCS2, MGN_VHT1SS_MCS3, MGN_VHT1SS_MCS4, MGN_VHT1SS_MCS5, MGN_VHT1SS_MCS6, MGN_VHT1SS_MCS7, MGN_VHT1SS_MCS8, MGN_VHT1SS_MCS9}, vht2ssRates[10] = {MGN_VHT2SS_MCS0, MGN_VHT2SS_MCS1, MGN_VHT2SS_MCS2, MGN_VHT2SS_MCS3, MGN_VHT2SS_MCS4, MGN_VHT2SS_MCS5, MGN_VHT2SS_MCS6, MGN_VHT2SS_MCS7, MGN_VHT2SS_MCS8, MGN_VHT2SS_MCS9}, vht3ssRates[10] = {MGN_VHT3SS_MCS0, MGN_VHT3SS_MCS1, MGN_VHT3SS_MCS2, MGN_VHT3SS_MCS3, MGN_VHT3SS_MCS4, MGN_VHT3SS_MCS5, MGN_VHT3SS_MCS6, MGN_VHT3SS_MCS7, MGN_VHT3SS_MCS8, MGN_VHT3SS_MCS9}; //DBG_871X("===>PHY_ConvertTxPowerByRateInDbmToRelativeValues()\n" ); for ( band = BAND_ON_2_4G; band <= BAND_ON_5G; ++band ) { for ( path = ODM_RF_PATH_A; path <= ODM_RF_PATH_D; ++path ) { for ( txNum = RF_1TX; txNum < RF_MAX_TX_NUM; ++txNum ) { // CCK base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_11M ); for ( i = 0; i < sizeof( cckRates ); ++i ) { value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, cckRates[i] ); PHY_SetTxPowerByRate( pAdapter, band, path, txNum, cckRates[i], value - base ); } // OFDM base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_54M ); for ( i = 0; i < sizeof( ofdmRates ); ++i ) { value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, ofdmRates[i] ); PHY_SetTxPowerByRate( pAdapter, band, path, txNum, ofdmRates[i], value - base ); } // HT MCS0~7 base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_MCS7 ); for ( i = 0; i < sizeof( mcs0_7Rates ); ++i ) { value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, mcs0_7Rates[i] ); PHY_SetTxPowerByRate( pAdapter, band, path, txNum, mcs0_7Rates[i], value - base ); } // HT MCS8~15 base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_MCS15 ); for ( i = 0; i < sizeof( mcs8_15Rates ); ++i ) { value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, mcs8_15Rates[i] ); PHY_SetTxPowerByRate( pAdapter, band, path, txNum, mcs8_15Rates[i], value - base ); } // HT MCS16~23 base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_MCS23 ); for ( i = 0; i < sizeof( mcs16_23Rates ); ++i ) { value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, mcs16_23Rates[i] ); PHY_SetTxPowerByRate( pAdapter, band, path, txNum, mcs16_23Rates[i], value - base ); } // VHT 1SS base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_VHT1SS_MCS7 ); for ( i = 0; i < sizeof( vht1ssRates ); ++i ) { value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, vht1ssRates[i] ); PHY_SetTxPowerByRate( pAdapter, band, path, txNum, vht1ssRates[i], value - base ); } // VHT 2SS base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_VHT2SS_MCS7 ); for ( i = 0; i < sizeof( vht2ssRates ); ++i ) { value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, vht2ssRates[i] ); PHY_SetTxPowerByRate( pAdapter, band, path, txNum, vht2ssRates[i], value - base ); } // VHT 3SS base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_VHT3SS_MCS7 ); for ( i = 0; i < sizeof( vht3ssRates ); ++i ) { value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, vht3ssRates[i] ); PHY_SetTxPowerByRate( pAdapter, band, path, txNum, vht3ssRates[i], value - base ); } } } } //DBG_871X("<===PHY_ConvertTxPowerByRateInDbmToRelativeValues()\n" ); } /* * This function must be called if the value in the PHY_REG_PG.txt(or header) * is exact dBm values */ VOID PHY_TxPowerByRateConfiguration( IN PADAPTER pAdapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA( pAdapter); phy_StoreTxPowerByRateBase( pAdapter ); phy_ConvertTxPowerByRateInDbmToRelativeValues( pAdapter ); } VOID PHY_SetTxPowerIndexByRateSection( IN PADAPTER pAdapter, IN u8 RFPath, IN u8 Channel, IN u8 RateSection ) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter); if ( RateSection == CCK ) { u8 cckRates[] = {MGN_1M, MGN_2M, MGN_5_5M, MGN_11M}; if ( pHalData->CurrentBandType == BAND_ON_2_4G ) PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel, cckRates, sizeof(cckRates)/sizeof(u8) ); } else if ( RateSection == OFDM ) { u8 ofdmRates[] = {MGN_6M, MGN_9M, MGN_12M, MGN_18M, MGN_24M, MGN_36M, MGN_48M, MGN_54M}; PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel, ofdmRates, sizeof(ofdmRates)/sizeof(u8)); } else if ( RateSection == HT_MCS0_MCS7 ) { u8 htRates1T[] = {MGN_MCS0, MGN_MCS1, MGN_MCS2, MGN_MCS3, MGN_MCS4, MGN_MCS5, MGN_MCS6, MGN_MCS7}; PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel, htRates1T, sizeof(htRates1T)/sizeof(u8)); } else if ( RateSection == HT_MCS8_MCS15 ) { u8 htRates2T[] = {MGN_MCS8, MGN_MCS9, MGN_MCS10, MGN_MCS11, MGN_MCS12, MGN_MCS13, MGN_MCS14, MGN_MCS15}; PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel, htRates2T, sizeof(htRates2T)/sizeof(u8)); } else if ( RateSection == HT_MCS16_MCS23 ) { u1Byte htRates3T[] = {MGN_MCS16, MGN_MCS17, MGN_MCS18, MGN_MCS19, MGN_MCS20, MGN_MCS21, MGN_MCS22, MGN_MCS23}; PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel, htRates3T, sizeof(htRates3T)/sizeof(u1Byte)); } else if ( RateSection == HT_MCS24_MCS31 ) { u1Byte htRates4T[] = {MGN_MCS24, MGN_MCS25, MGN_MCS26, MGN_MCS27, MGN_MCS28, MGN_MCS29, MGN_MCS30, MGN_MCS31}; PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel, htRates4T, sizeof(htRates4T)/sizeof(u1Byte)); } else if ( RateSection == VHT_1SSMCS0_1SSMCS9 ) { u8 vhtRates1T[] = {MGN_VHT1SS_MCS0, MGN_VHT1SS_MCS1, MGN_VHT1SS_MCS2, MGN_VHT1SS_MCS3, MGN_VHT1SS_MCS4, MGN_VHT1SS_MCS5, MGN_VHT1SS_MCS6, MGN_VHT1SS_MCS7, MGN_VHT1SS_MCS8, MGN_VHT1SS_MCS9}; PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel, vhtRates1T, sizeof(vhtRates1T)/sizeof(u8)); } else if ( RateSection == VHT_2SSMCS0_2SSMCS9 ) { u8 vhtRates2T[] = {MGN_VHT2SS_MCS0, MGN_VHT2SS_MCS1, MGN_VHT2SS_MCS2, MGN_VHT2SS_MCS3, MGN_VHT2SS_MCS4, MGN_VHT2SS_MCS5, MGN_VHT2SS_MCS6, MGN_VHT2SS_MCS7, MGN_VHT2SS_MCS8, MGN_VHT2SS_MCS9}; PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel, vhtRates2T, sizeof(vhtRates2T)/sizeof(u8)); } else if ( RateSection == VHT_3SSMCS0_3SSMCS9 ) { u1Byte vhtRates3T[] = {MGN_VHT3SS_MCS0, MGN_VHT3SS_MCS1, MGN_VHT3SS_MCS2, MGN_VHT3SS_MCS3, MGN_VHT3SS_MCS4, MGN_VHT3SS_MCS5, MGN_VHT3SS_MCS6, MGN_VHT3SS_MCS7, MGN_VHT3SS_MCS8, MGN_VHT3SS_MCS9}; PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel, vhtRates3T, sizeof(vhtRates3T)/sizeof(u1Byte)); } else if ( RateSection == VHT_4SSMCS0_4SSMCS9 ) { u1Byte vhtRates4T[] = {MGN_VHT4SS_MCS0, MGN_VHT4SS_MCS1, MGN_VHT4SS_MCS2, MGN_VHT4SS_MCS3, MGN_VHT4SS_MCS4, MGN_VHT4SS_MCS5, MGN_VHT4SS_MCS6, MGN_VHT4SS_MCS7, MGN_VHT4SS_MCS8, MGN_VHT4SS_MCS9}; PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel, vhtRates4T, sizeof(vhtRates4T)/sizeof(u1Byte)); } else { DBG_871X("Invalid RateSection %d in %s", RateSection, __FUNCTION__ ); } } BOOLEAN phy_GetChnlIndex( IN u8 Channel, OUT u8* ChannelIdx ) { u8 i = 0; BOOLEAN bIn24G=_TRUE; if (Channel <= 14) { bIn24G = _TRUE; *ChannelIdx = Channel - 1; } else { bIn24G = _FALSE; for (i = 0; i < CENTER_CH_5G_ALL_NUM; ++i) { if (center_ch_5g_all[i] == Channel) { *ChannelIdx = i; return bIn24G; } } } return bIn24G; } u8 PHY_GetTxPowerIndexBase( IN PADAPTER pAdapter, IN u8 RFPath, IN u8 Rate, IN CHANNEL_WIDTH BandWidth, IN u8 Channel, OUT PBOOLEAN bIn24G ) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter); PDM_ODM_T pDM_Odm = &pHalData->odmpriv; u8 i = 0; //default set to 1S u8 txPower = 0; u8 chnlIdx = (Channel-1); if (HAL_IsLegalChannel(pAdapter, Channel) == _FALSE) { chnlIdx = 0; DBG_871X("Illegal channel!!\n"); } *bIn24G = phy_GetChnlIndex(Channel, &chnlIdx); //DBG_871X("[%s] Channel Index: %d\n", (*bIn24G?"2.4G":"5G"), chnlIdx); if (*bIn24G) //3 ============================== 2.4 G ============================== { if ( IS_CCK_RATE(Rate) ) { txPower = pHalData->Index24G_CCK_Base[RFPath][chnlIdx]; } else if ( MGN_6M <= Rate ) { txPower = pHalData->Index24G_BW40_Base[RFPath][chnlIdx]; } else { DBG_871X("PHY_GetTxPowerIndexBase: INVALID Rate.\n"); } //DBG_871X("Base Tx power(RF-%c, Rate #%d, Channel Index %d) = 0x%X\n", // ((RFPath==0)?'A':'B'), Rate, chnlIdx, txPower); // OFDM-1T if ( (MGN_6M <= Rate && Rate <= MGN_54M) && ! IS_CCK_RATE(Rate) ) { txPower += pHalData->OFDM_24G_Diff[RFPath][TX_1S]; //DBG_871X("+PowerDiff 2.4G (RF-%c): (OFDM-1T) = (%d)\n", ((RFPath==0)?'A':'B'), pHalData->OFDM_24G_Diff[RFPath][TX_1S]); } // BW20-1S, BW20-2S if (BandWidth == CHANNEL_WIDTH_20) { if ( (MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_24G_Diff[RFPath][TX_1S]; if ( (MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_24G_Diff[RFPath][TX_2S]; if ( (MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_24G_Diff[RFPath][TX_3S]; if ( (MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_24G_Diff[RFPath][TX_4S]; //DBG_871X("+PowerDiff 2.4G (RF-%c): (BW20-1S, BW20-2S, BW20-3S, BW20-4S) = (%d, %d, %d, %d)\n", ((RFPath==0)?'A':(RFPath==1)?'B':(RFPath==2)?'C':'D'), // pHalData->BW20_24G_Diff[RFPath][TX_1S], pHalData->BW20_24G_Diff[RFPath][TX_2S], // pHalData->BW20_24G_Diff[RFPath][TX_3S], pHalData->BW20_24G_Diff[RFPath][TX_4S]); } // BW40-1S, BW40-2S else if (BandWidth == CHANNEL_WIDTH_40) { if ( (MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_1S]; if ( (MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_2S]; if ( (MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_3S]; if ( (MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_4S]; //DBG_871X("+PowerDiff 2.4G (RF-%c): (BW40-1S, BW40-2S, BW40-3S, BW40-4S) = (%d, %d, %d, %d)\n", ((RFPath==0)?'A':(RFPath==1)?'B':(RFPath==2)?'C':'D'), // pHalData->BW40_24G_Diff[RFPath][TX_1S], pHalData->BW40_24G_Diff[RFPath][TX_2S], // pHalData->BW40_24G_Diff[RFPath][TX_3S], pHalData->BW40_24G_Diff[RFPath][TX_4S]); } // Willis suggest adopt BW 40M power index while in BW 80 mode else if ( BandWidth == CHANNEL_WIDTH_80 ) { if ( (MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_1S]; if ( (MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_2S]; if ( (MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_3S]; if ( (MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_4S]; //DBG_871X("+PowerDiff 2.4G (RF-%c): (BW40-1S, BW40-2S, BW40-3S, BW40-4T) = (%d, %d, %d, %d) P.S. Current is in BW 80MHz\n", ((RFPath==0)?'A':(RFPath==1)?'B':(RFPath==2)?'C':'D'), // pHalData->BW40_24G_Diff[RFPath][TX_1S], pHalData->BW40_24G_Diff[RFPath][TX_2S], // pHalData->BW40_24G_Diff[RFPath][TX_3S], pHalData->BW40_24G_Diff[RFPath][TX_4S]); } } else //3 ============================== 5 G ============================== { if ( MGN_6M <= Rate ) { txPower = pHalData->Index5G_BW40_Base[RFPath][chnlIdx]; } else { DBG_871X("===> mpt_ProQueryCalTxPower_Jaguar: INVALID Rate.\n"); } //DBG_871X("Base Tx power(RF-%c, Rate #%d, Channel Index %d) = 0x%X\n", // ((RFPath==0)?'A':'B'), Rate, chnlIdx, txPower); // OFDM-1T if ( (MGN_6M <= Rate && Rate <= MGN_54M) && ! IS_CCK_RATE(Rate)) { txPower += pHalData->OFDM_5G_Diff[RFPath][TX_1S]; //DBG_871X("+PowerDiff 5G (RF-%c): (OFDM-1T) = (%d)\n", ((RFPath==0)?'A':'B'), pHalData->OFDM_5G_Diff[RFPath][TX_1S]); } // BW20-1S, BW20-2S if (BandWidth == CHANNEL_WIDTH_20) { if ( (MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_5G_Diff[RFPath][TX_1S]; if ( (MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_5G_Diff[RFPath][TX_2S]; if ( (MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_5G_Diff[RFPath][TX_3S]; if ( (MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_5G_Diff[RFPath][TX_4S]; //DBG_871X("+PowerDiff 5G (RF-%c): (BW20-1S, BW20-2S, BW20-3S, BW20-4S) = (%d, %d, %d, %d)\n", ((RFPath==0)?'A':(RFPath==1)?'B':(RFPath==2)?'C':'D'), // pHalData->BW20_5G_Diff[RFPath][TX_1S], pHalData->BW20_5G_Diff[RFPath][TX_2S], // pHalData->BW20_5G_Diff[RFPath][TX_3S], pHalData->BW20_5G_Diff[RFPath][TX_4S]); } // BW40-1S, BW40-2S else if (BandWidth == CHANNEL_WIDTH_40) { if ( (MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_5G_Diff[RFPath][TX_1S]; if ( (MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_5G_Diff[RFPath][TX_2S]; if ( (MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_5G_Diff[RFPath][TX_3S]; if ( (MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_5G_Diff[RFPath][TX_4S]; //DBG_871X("+PowerDiff 5G(RF-%c): (BW40-1S, BW40-2S) = (%d, %d, %d, %d)\n", ((RFPath==0)?'A':(RFPath==1)?'B':(RFPath==2)?'C':'D'), // pHalData->BW40_5G_Diff[RFPath][TX_1S], pHalData->BW40_5G_Diff[RFPath][TX_2S], // pHalData->BW40_5G_Diff[RFPath][TX_3S], pHalData->BW40_5G_Diff[RFPath][TX_4S]); } // BW80-1S, BW80-2S else if (BandWidth== CHANNEL_WIDTH_80) { // <20121220, Kordan> Get the index of array "Index5G_BW80_Base". for (i = 0; i < CENTER_CH_5G_80M_NUM; ++i) if (center_ch_5g_80m[i] == Channel) chnlIdx = i; txPower = pHalData->Index5G_BW80_Base[RFPath][chnlIdx]; if ( (MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += + pHalData->BW80_5G_Diff[RFPath][TX_1S]; if ( (MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW80_5G_Diff[RFPath][TX_2S]; if ( (MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW80_5G_Diff[RFPath][TX_3S]; if ( (MGN_MCS23 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW80_5G_Diff[RFPath][TX_4S]; //DBG_871X("+PowerDiff 5G(RF-%c): (BW80-1S, BW80-2S, BW80-3S, BW80-4S) = (%d, %d, %d, %d)\n",((RFPath==0)?'A':(RFPath==1)?'B':(RFPath==2)?'C':'D'), // pHalData->BW80_5G_Diff[RFPath][TX_1S], pHalData->BW80_5G_Diff[RFPath][TX_2S], // pHalData->BW80_5G_Diff[RFPath][TX_3S], pHalData->BW80_5G_Diff[RFPath][TX_4S]); } } return txPower; } s8 PHY_GetTxPowerTrackingOffset( PADAPTER pAdapter, u8 RFPath, u8 Rate ) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter); PDM_ODM_T pDM_Odm = &pHalData->odmpriv; s8 offset = 0; if( pDM_Odm->RFCalibrateInfo.TxPowerTrackControl == _FALSE) return offset; if ((Rate == MGN_1M) ||(Rate == MGN_2M)||(Rate == MGN_5_5M)||(Rate == MGN_11M)) { offset = pDM_Odm->RFCalibrateInfo.Remnant_CCKSwingIdx; /*DBG_871X("+Remnant_CCKSwingIdx = 0x%x\n", RFPath, Rate, pRFCalibrateInfo->Remnant_CCKSwingIdx);*/ } else { offset = pDM_Odm->RFCalibrateInfo.Remnant_OFDMSwingIdx[RFPath]; /*DBG_871X("+Remanant_OFDMSwingIdx[RFPath %u][Rate 0x%x] = 0x%x\n", RFPath, Rate, pRFCalibrateInfo->Remnant_OFDMSwingIdx[RFPath]); */ } return offset; } u8 PHY_GetRateIndexOfTxPowerByRate( IN u8 Rate ) { u8 index = 0; switch ( Rate ) { case MGN_1M: index = 0; break; case MGN_2M: index = 1; break; case MGN_5_5M: index = 2; break; case MGN_11M: index = 3; break; case MGN_6M: index = 4; break; case MGN_9M: index = 5; break; case MGN_12M: index = 6; break; case MGN_18M: index = 7; break; case MGN_24M: index = 8; break; case MGN_36M: index = 9; break; case MGN_48M: index = 10; break; case MGN_54M: index = 11; break; case MGN_MCS0: index = 12; break; case MGN_MCS1: index = 13; break; case MGN_MCS2: index = 14; break; case MGN_MCS3: index = 15; break; case MGN_MCS4: index = 16; break; case MGN_MCS5: index = 17; break; case MGN_MCS6: index = 18; break; case MGN_MCS7: index = 19; break; case MGN_MCS8: index = 20; break; case MGN_MCS9: index = 21; break; case MGN_MCS10: index = 22; break; case MGN_MCS11: index = 23; break; case MGN_MCS12: index = 24; break; case MGN_MCS13: index = 25; break; case MGN_MCS14: index = 26; break; case MGN_MCS15: index = 27; break; case MGN_MCS16: index = 28; break; case MGN_MCS17: index = 29; break; case MGN_MCS18: index = 30; break; case MGN_MCS19: index = 31; break; case MGN_MCS20: index = 32; break; case MGN_MCS21: index = 33; break; case MGN_MCS22: index = 34; break; case MGN_MCS23: index = 35; break; case MGN_MCS24: index = 36; break; case MGN_MCS25: index = 37; break; case MGN_MCS26: index = 38; break; case MGN_MCS27: index = 39; break; case MGN_MCS28: index = 40; break; case MGN_MCS29: index = 41; break; case MGN_MCS30: index = 42; break; case MGN_MCS31: index = 43; break; case MGN_VHT1SS_MCS0: index = 44; break; case MGN_VHT1SS_MCS1: index = 45; break; case MGN_VHT1SS_MCS2: index = 46; break; case MGN_VHT1SS_MCS3: index = 47; break; case MGN_VHT1SS_MCS4: index = 48; break; case MGN_VHT1SS_MCS5: index = 49; break; case MGN_VHT1SS_MCS6: index = 50; break; case MGN_VHT1SS_MCS7: index = 51; break; case MGN_VHT1SS_MCS8: index = 52; break; case MGN_VHT1SS_MCS9: index = 53; break; case MGN_VHT2SS_MCS0: index = 54; break; case MGN_VHT2SS_MCS1: index = 55; break; case MGN_VHT2SS_MCS2: index = 56; break; case MGN_VHT2SS_MCS3: index = 57; break; case MGN_VHT2SS_MCS4: index = 58; break; case MGN_VHT2SS_MCS5: index = 59; break; case MGN_VHT2SS_MCS6: index = 60; break; case MGN_VHT2SS_MCS7: index = 61; break; case MGN_VHT2SS_MCS8: index = 62; break; case MGN_VHT2SS_MCS9: index = 63; break; case MGN_VHT3SS_MCS0: index = 64; break; case MGN_VHT3SS_MCS1: index = 65; break; case MGN_VHT3SS_MCS2: index = 66; break; case MGN_VHT3SS_MCS3: index = 67; break; case MGN_VHT3SS_MCS4: index = 68; break; case MGN_VHT3SS_MCS5: index = 69; break; case MGN_VHT3SS_MCS6: index = 70; break; case MGN_VHT3SS_MCS7: index = 71; break; case MGN_VHT3SS_MCS8: index = 72; break; case MGN_VHT3SS_MCS9: index = 73; break; case MGN_VHT4SS_MCS0: index = 74; break; case MGN_VHT4SS_MCS1: index = 75; break; case MGN_VHT4SS_MCS2: index = 76; break; case MGN_VHT4SS_MCS3: index = 77; break; case MGN_VHT4SS_MCS4: index = 78; break; case MGN_VHT4SS_MCS5: index = 79; break; case MGN_VHT4SS_MCS6: index = 80; break; case MGN_VHT4SS_MCS7: index = 81; break; case MGN_VHT4SS_MCS8: index = 82; break; case MGN_VHT4SS_MCS9: index = 83; break; default: DBG_871X("Invalid rate 0x%x in %s\n", Rate, __FUNCTION__ ); break; }; return index; } s8 _PHY_GetTxPowerByRate( IN PADAPTER pAdapter, IN u8 Band, IN u8 RFPath, IN u8 TxNum, IN u8 Rate ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); s8 value = 0; u8 rateIndex = PHY_GetRateIndexOfTxPowerByRate(Rate); if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) { DBG_871X("Invalid band %d in %s\n", Band, __func__); goto exit; } if (RFPath > ODM_RF_PATH_D) { DBG_871X("Invalid RfPath %d in %s\n", RFPath, __func__); goto exit; } if (TxNum >= RF_MAX_TX_NUM) { DBG_871X("Invalid TxNum %d in %s\n", TxNum, __func__); goto exit; } if (rateIndex >= TX_PWR_BY_RATE_NUM_RATE) { DBG_871X("Invalid RateIndex %d in %s\n", rateIndex, __func__); goto exit; } value = pHalData->TxPwrByRateOffset[Band][RFPath][TxNum][rateIndex]; exit: return value; } s8 PHY_GetTxPowerByRate( IN PADAPTER pAdapter, IN u8 Band, IN u8 RFPath, IN u8 TxNum, IN u8 Rate ) { if (!phy_is_tx_power_by_rate_needed(pAdapter)) return 0; return _PHY_GetTxPowerByRate(pAdapter, Band, RFPath, TxNum, Rate); } VOID PHY_SetTxPowerByRate( IN PADAPTER pAdapter, IN u8 Band, IN u8 RFPath, IN u8 TxNum, IN u8 Rate, IN s8 Value ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA( pAdapter ); u8 rateIndex = PHY_GetRateIndexOfTxPowerByRate( Rate ); if ( Band != BAND_ON_2_4G && Band != BAND_ON_5G ) { DBG_871X("Invalid band %d in %s\n", Band, __FUNCTION__ ); return; } if ( RFPath > ODM_RF_PATH_D ) { DBG_871X("Invalid RfPath %d in %s\n", RFPath, __FUNCTION__ ); return; } if ( TxNum >= RF_MAX_TX_NUM ) { DBG_871X( "Invalid TxNum %d in %s\n", TxNum, __FUNCTION__ ); return; } if ( rateIndex >= TX_PWR_BY_RATE_NUM_RATE ) { DBG_871X("Invalid RateIndex %d in %s\n", rateIndex, __FUNCTION__ ); return; } pHalData->TxPwrByRateOffset[Band][RFPath][TxNum][rateIndex] = Value; } VOID PHY_SetTxPowerLevelByPath( IN PADAPTER Adapter, IN u8 channel, IN u8 path ) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter); BOOLEAN bIsIn24G = (pHalData->CurrentBandType == BAND_ON_2_4G ); //if ( pMgntInfo->RegNByteAccess == 0 ) { if ( bIsIn24G ) PHY_SetTxPowerIndexByRateSection( Adapter, path, channel, CCK ); PHY_SetTxPowerIndexByRateSection( Adapter, path, channel, OFDM ); PHY_SetTxPowerIndexByRateSection( Adapter, path, channel, HT_MCS0_MCS7 ); if (IS_HARDWARE_TYPE_JAGUAR(Adapter) || IS_HARDWARE_TYPE_8814A(Adapter)) PHY_SetTxPowerIndexByRateSection(Adapter, path, channel, VHT_1SSMCS0_1SSMCS9); if (pHalData->NumTotalRFPath >= 2) { PHY_SetTxPowerIndexByRateSection( Adapter, path, channel, HT_MCS8_MCS15 ); if (IS_HARDWARE_TYPE_JAGUAR(Adapter) || IS_HARDWARE_TYPE_8814A(Adapter)) PHY_SetTxPowerIndexByRateSection(Adapter, path, channel, VHT_2SSMCS0_2SSMCS9); if (IS_HARDWARE_TYPE_8814A(Adapter)) { PHY_SetTxPowerIndexByRateSection( Adapter, path, channel, HT_MCS16_MCS23 ); PHY_SetTxPowerIndexByRateSection( Adapter, path, channel, VHT_3SSMCS0_3SSMCS9 ); } } } } VOID PHY_SetTxPowerIndexByRateArray( IN PADAPTER pAdapter, IN u8 RFPath, IN CHANNEL_WIDTH BandWidth, IN u8 Channel, IN u8* Rates, IN u8 RateArraySize ) { u32 powerIndex = 0; int i = 0; for (i = 0; i < RateArraySize; ++i) { powerIndex = PHY_GetTxPowerIndex(pAdapter, RFPath, Rates[i], BandWidth, Channel); PHY_SetTxPowerIndex(pAdapter, powerIndex, RFPath, Rates[i]); } } s8 phy_GetWorldWideLimit( s8* LimitTable ) { s8 min = LimitTable[0]; u8 i = 0; for (i = 0; i < MAX_REGULATION_NUM; ++i) { if (LimitTable[i] < min) min = LimitTable[i]; } return min; } s8 phy_GetChannelIndexOfTxPowerLimit( IN u8 Band, IN u8 Channel ) { s8 channelIndex = -1; u8 i = 0; if (Band == BAND_ON_2_4G) { channelIndex = Channel - 1; } else if (Band == BAND_ON_5G) { for (i = 0; i < CENTER_CH_5G_ALL_NUM; ++i) { if (center_ch_5g_all[i] == Channel) channelIndex = i; } } else { DBG_871X_LEVEL(_drv_always_, "Invalid Band %d in %s\n", Band, __func__); } if (channelIndex == -1) DBG_871X_LEVEL(_drv_always_, "Invalid Channel %d of Band %d in %s\n", Channel, Band, __func__); return channelIndex; } s8 PHY_GetTxPowerLimit( IN PADAPTER Adapter, IN u32 RegPwrTblSel, IN BAND_TYPE Band, IN CHANNEL_WIDTH Bandwidth, IN u8 RfPath, IN u8 DataRate, IN u8 Channel ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); s16 band = -1, regulation = -1, bandwidth = -1, rateSection = -1, channel = -1; s8 powerLimit = MAX_POWER_INDEX; if ( ( Adapter->registrypriv.RegEnableTxPowerLimit == 2 && pHalData->EEPROMRegulatory != 1 ) || Adapter->registrypriv.RegEnableTxPowerLimit == 0 ) return MAX_POWER_INDEX; switch (RegPwrTblSel) { case 1: regulation = TXPWR_LMT_ETSI; break; case 2: regulation = TXPWR_LMT_MKK; break; case 3: regulation = TXPWR_LMT_FCC; break; case 4: regulation = TXPWR_LMT_WW; break; default: regulation = (Band == BAND_ON_2_4G) ? pHalData->Regulation2_4G : pHalData->Regulation5G; break; } //DBG_871X("pMgntInfo->RegPwrTblSel %d, final regulation %d\n", Adapter->registrypriv.RegPwrTblSel, regulation ); if ( Band == BAND_ON_2_4G ) band = 0; else if ( Band == BAND_ON_5G ) band = 1; if ( Bandwidth == CHANNEL_WIDTH_20 ) bandwidth = 0; else if ( Bandwidth == CHANNEL_WIDTH_40 ) bandwidth = 1; else if ( Bandwidth == CHANNEL_WIDTH_80 ) bandwidth = 2; else if ( Bandwidth == CHANNEL_WIDTH_160 ) bandwidth = 3; switch ( DataRate ) { case MGN_1M: case MGN_2M: case MGN_5_5M: case MGN_11M: rateSection = 0; break; case MGN_6M: case MGN_9M: case MGN_12M: case MGN_18M: case MGN_24M: case MGN_36M: case MGN_48M: case MGN_54M: rateSection = 1; break; case MGN_MCS0: case MGN_MCS1: case MGN_MCS2: case MGN_MCS3: case MGN_MCS4: case MGN_MCS5: case MGN_MCS6: case MGN_MCS7: rateSection = 2; break; case MGN_MCS8: case MGN_MCS9: case MGN_MCS10: case MGN_MCS11: case MGN_MCS12: case MGN_MCS13: case MGN_MCS14: case MGN_MCS15: rateSection = 3; break; case MGN_MCS16: case MGN_MCS17: case MGN_MCS18: case MGN_MCS19: case MGN_MCS20: case MGN_MCS21: case MGN_MCS22: case MGN_MCS23: rateSection = 4; break; case MGN_MCS24: case MGN_MCS25: case MGN_MCS26: case MGN_MCS27: case MGN_MCS28: case MGN_MCS29: case MGN_MCS30: case MGN_MCS31: rateSection = 5; break; case MGN_VHT1SS_MCS0: case MGN_VHT1SS_MCS1: case MGN_VHT1SS_MCS2: case MGN_VHT1SS_MCS3: case MGN_VHT1SS_MCS4: case MGN_VHT1SS_MCS5: case MGN_VHT1SS_MCS6: case MGN_VHT1SS_MCS7: case MGN_VHT1SS_MCS8: case MGN_VHT1SS_MCS9: rateSection = 6; break; case MGN_VHT2SS_MCS0: case MGN_VHT2SS_MCS1: case MGN_VHT2SS_MCS2: case MGN_VHT2SS_MCS3: case MGN_VHT2SS_MCS4: case MGN_VHT2SS_MCS5: case MGN_VHT2SS_MCS6: case MGN_VHT2SS_MCS7: case MGN_VHT2SS_MCS8: case MGN_VHT2SS_MCS9: rateSection = 7; break; case MGN_VHT3SS_MCS0: case MGN_VHT3SS_MCS1: case MGN_VHT3SS_MCS2: case MGN_VHT3SS_MCS3: case MGN_VHT3SS_MCS4: case MGN_VHT3SS_MCS5: case MGN_VHT3SS_MCS6: case MGN_VHT3SS_MCS7: case MGN_VHT3SS_MCS8: case MGN_VHT3SS_MCS9: rateSection = 8; break; case MGN_VHT4SS_MCS0: case MGN_VHT4SS_MCS1: case MGN_VHT4SS_MCS2: case MGN_VHT4SS_MCS3: case MGN_VHT4SS_MCS4: case MGN_VHT4SS_MCS5: case MGN_VHT4SS_MCS6: case MGN_VHT4SS_MCS7: case MGN_VHT4SS_MCS8: case MGN_VHT4SS_MCS9: rateSection = 9; break; default: DBG_871X("Wrong rate 0x%x\n", DataRate ); break; } if ( Band == BAND_ON_5G && rateSection == 0 ) DBG_871X("Wrong rate 0x%x: No CCK in 5G Band\n", DataRate ); // workaround for wrong index combination to obtain tx power limit, // OFDM only exists in BW 20M if ( rateSection == 1 ) bandwidth = 0; // workaround for wrong index combination to obtain tx power limit, // CCK table will only be given in BW 20M if ( rateSection == 0 ) bandwidth = 0; // workaround for wrong indxe combination to obtain tx power limit, // HT on 80M will reference to HT on 40M if ( ( rateSection == 2 || rateSection == 3 ) && Band == BAND_ON_5G && bandwidth == 2 ) { bandwidth = 1; } if ( Band == BAND_ON_2_4G ) channel = phy_GetChannelIndexOfTxPowerLimit( BAND_ON_2_4G, Channel ); else if ( Band == BAND_ON_5G ) channel = phy_GetChannelIndexOfTxPowerLimit( BAND_ON_5G, Channel ); else if ( Band == BAND_ON_BOTH ) { // BAND_ON_BOTH don't care temporarily } if ( band == -1 || regulation == -1 || bandwidth == -1 || rateSection == -1 || channel == -1 ) { //DBG_871X("Wrong index value to access power limit table [band %d][regulation %d][bandwidth %d][rf_path %d][rate_section %d][chnlGroup %d]\n", // band, regulation, bandwidth, RfPath, rateSection, channelGroup ); return MAX_POWER_INDEX; } if ( Band == BAND_ON_2_4G ) { s8 limits[10] = {0}; u8 i = 0; if (bandwidth >= MAX_2_4G_BANDWIDTH_NUM) bandwidth = MAX_2_4G_BANDWIDTH_NUM - 1; for (i = 0; i < MAX_REGULATION_NUM; ++i) limits[i] = pHalData->TxPwrLimit_2_4G[i][bandwidth][rateSection][channel][RfPath]; powerLimit = (regulation == TXPWR_LMT_WW) ? phy_GetWorldWideLimit(limits) : pHalData->TxPwrLimit_2_4G[regulation][bandwidth][rateSection][channel][RfPath]; } else if ( Band == BAND_ON_5G ) { s8 limits[10] = {0}; u8 i = 0; for (i = 0; i < MAX_REGULATION_NUM; ++i) limits[i] = pHalData->TxPwrLimit_5G[i][bandwidth][rateSection][channel][RfPath]; powerLimit = (regulation == TXPWR_LMT_WW) ? phy_GetWorldWideLimit(limits) : pHalData->TxPwrLimit_5G[regulation][bandwidth][rateSection][channel][RfPath]; } else DBG_871X("No power limit table of the specified band\n" ); // combine 5G VHT & HT rate // 5G 20M and 40M HT and VHT can cross reference /* if ( Band == BAND_ON_5G && powerLimit == MAX_POWER_INDEX ) { if ( bandwidth == 0 || bandwidth == 1 ) { RT_TRACE( COMP_INIT, DBG_LOUD, ( "No power limit table of the specified band %d, bandwidth %d, ratesection %d, rf path %d\n", band, bandwidth, rateSection, RfPath ) ); if ( rateSection == 2 ) powerLimit = pHalData->TxPwrLimit_5G[regulation] [bandwidth][4][channelGroup][RfPath]; else if ( rateSection == 4 ) powerLimit = pHalData->TxPwrLimit_5G[regulation] [bandwidth][2][channelGroup][RfPath]; else if ( rateSection == 3 ) powerLimit = pHalData->TxPwrLimit_5G[regulation] [bandwidth][5][channelGroup][RfPath]; else if ( rateSection == 5 ) powerLimit = pHalData->TxPwrLimit_5G[regulation] [bandwidth][3][channelGroup][RfPath]; } } */ //DBG_871X("TxPwrLmt[Regulation %d][Band %d][BW %d][RFPath %d][Rate 0x%x][Chnl %d] = %d\n", // regulation, pHalData->CurrentBandType, Bandwidth, RfPath, DataRate, Channel, powerLimit); return powerLimit; } VOID phy_CrossReferenceHTAndVHTTxPowerLimit( IN PADAPTER pAdapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); u8 regulation, bw, channel, rs, ref_rs; int ht_ref_vht_5g_20_40 = 0; int vht_ref_ht_5g_20_40 = 0; int ht_has_ref_5g_20_40 = 0; int vht_has_ref_5g_20_40 = 0; pHalData->tx_pwr_lmt_5g_20_40_ref = 0; for (regulation = 0; regulation < MAX_REGULATION_NUM; ++regulation) { for (bw = 0; bw < MAX_5G_BANDWIDTH_NUM; ++bw) { for (channel = 0; channel < CENTER_CH_5G_ALL_NUM; ++channel) { for (rs = 0; rs < MAX_RATE_SECTION_NUM; ++rs) { /* 5G 20M 40M VHT and HT can cross reference */ if (bw == CHANNEL_WIDTH_20 || bw == CHANNEL_WIDTH_40) { if (rs == HT_1SS) ref_rs = VHT_1SS; else if (rs == HT_2SS) ref_rs = VHT_2SS; else if (rs == HT_3SS) ref_rs = VHT_3SS; else if (rs == HT_4SS) ref_rs = VHT_4SS; else if (rs == VHT_1SS) ref_rs = HT_1SS; else if (rs == VHT_2SS) ref_rs = HT_2SS; else if (rs == VHT_3SS) ref_rs = HT_3SS; else if (rs == VHT_4SS) ref_rs = HT_4SS; else continue; if (pHalData->TxPwrLimit_5G[regulation][bw][ref_rs][channel][RF_PATH_A] == MAX_POWER_INDEX) continue; if (IS_HT_RATE_SECTION(rs)) ht_has_ref_5g_20_40++; else if (IS_VHT_RATE_SECTION(rs)) vht_has_ref_5g_20_40++; else continue; if (pHalData->TxPwrLimit_5G[regulation][bw][rs][channel][RF_PATH_A] != MAX_POWER_INDEX) continue; if (IS_HT_RATE_SECTION(rs) && IS_VHT_RATE_SECTION(ref_rs)) ht_ref_vht_5g_20_40++; else if (IS_VHT_RATE_SECTION(rs) && IS_HT_RATE_SECTION(ref_rs)) vht_ref_ht_5g_20_40++; if (0) DBG_871X("reg:%u, bw:%u, ch:%u, %s ref %s\n" , regulation, bw, channel , rate_section_str(rs), rate_section_str(ref_rs)); pHalData->TxPwrLimit_5G[regulation][bw][rs][channel][RF_PATH_A] = pHalData->TxPwrLimit_5G[regulation][bw][ref_rs][channel][RF_PATH_A]; } } } } } if (0) { DBG_871X("ht_ref_vht_5g_20_40:%d, ht_has_ref_5g_20_40:%d\n", ht_ref_vht_5g_20_40, ht_has_ref_5g_20_40); DBG_871X("vht_ref_hht_5g_20_40:%d, vht_has_ref_5g_20_40:%d\n", vht_ref_ht_5g_20_40, vht_has_ref_5g_20_40); } /* 5G 20M&40M HT all come from VHT*/ if (ht_ref_vht_5g_20_40 && ht_has_ref_5g_20_40 == ht_ref_vht_5g_20_40) pHalData->tx_pwr_lmt_5g_20_40_ref |= TX_PWR_LMT_REF_HT_FROM_VHT; /* 5G 20M&40M VHT all come from HT*/ if (vht_ref_ht_5g_20_40 && vht_has_ref_5g_20_40 == vht_ref_ht_5g_20_40) pHalData->tx_pwr_lmt_5g_20_40_ref |= TX_PWR_LMT_REF_VHT_FROM_HT; } VOID PHY_ConvertTxPowerLimitToPowerIndex( IN PADAPTER Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 base; u8 regulation, bw, channel, rateSection; s8 tempValue = 0, tempPwrLmt = 0; u8 rfPath = 0; if (pHalData->odmpriv.PhyRegPgValueType != PHY_REG_PG_EXACT_VALUE) { rtw_warn_on(1); return; } phy_CrossReferenceHTAndVHTTxPowerLimit(Adapter); for (regulation = 0; regulation < MAX_REGULATION_NUM; ++regulation) { for (bw = 0; bw < MAX_2_4G_BANDWIDTH_NUM; ++bw) { for (channel = 0; channel < CENTER_CH_2G_NUM; ++channel) { for (rateSection = CCK; rateSection <= HT_4SS; ++rateSection) { tempPwrLmt = pHalData->TxPwrLimit_2_4G[regulation][bw][rateSection][channel][RF_PATH_A]; if (tempPwrLmt != MAX_POWER_INDEX) { for (rfPath = RF_PATH_A; rfPath < MAX_RF_PATH; ++rfPath) { base = phy_get_target_tx_power(Adapter, BAND_ON_2_4G, rfPath, rateSection); tempValue = tempPwrLmt - base; pHalData->TxPwrLimit_2_4G[regulation][bw][rateSection][channel][rfPath] = tempValue; } } } } } } if (IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(Adapter)) { for (regulation = 0; regulation < MAX_REGULATION_NUM; ++regulation) { for (bw = 0; bw < MAX_5G_BANDWIDTH_NUM; ++bw) { for (channel = 0; channel < CENTER_CH_5G_ALL_NUM; ++channel) { for (rateSection = OFDM; rateSection <= VHT_4SS; ++rateSection) { tempPwrLmt = pHalData->TxPwrLimit_5G[regulation][bw][rateSection][channel][RF_PATH_A]; if (tempPwrLmt != MAX_POWER_INDEX) { for (rfPath = RF_PATH_A; rfPath < MAX_RF_PATH; ++rfPath) { base = phy_get_target_tx_power(Adapter, BAND_ON_5G, rfPath, rateSection); tempValue = tempPwrLmt - base; pHalData->TxPwrLimit_5G[regulation][bw][rateSection][channel][rfPath] = tempValue; } } } } } } } } /* * PHY_InitTxPowerLimit - Set all hal_data.TxPwrLimit_2_4G, TxPwrLimit_5G array to MAX_POWER_INDEX */ VOID PHY_InitTxPowerLimit( IN PADAPTER Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 i, j, k, l, m; for (i = 0; i < MAX_REGULATION_NUM; ++i) for (j = 0; j < MAX_2_4G_BANDWIDTH_NUM; ++j) for (k = 0; k < MAX_RATE_SECTION_NUM; ++k) for (m = 0; m < CENTER_CH_2G_NUM; ++m) for (l = 0; l < MAX_RF_PATH; ++l) pHalData->TxPwrLimit_2_4G[i][j][k][m][l] = MAX_POWER_INDEX; for (i = 0; i < MAX_REGULATION_NUM; ++i) for (j = 0; j < MAX_5G_BANDWIDTH_NUM; ++j) for (k = 0; k < MAX_RATE_SECTION_NUM; ++k) for (m = 0; m < CENTER_CH_5G_ALL_NUM; ++m) for (l = 0; l < MAX_RF_PATH; ++l) pHalData->TxPwrLimit_5G[i][j][k][m][l] = MAX_POWER_INDEX; } /* * PHY_SetTxPowerLimit - Parsing TX power limit from phydm array, called by odm_ConfigBB_TXPWR_LMT_XXX in phydm */ VOID PHY_SetTxPowerLimit( IN PDM_ODM_T pDM_Odm, IN u8 *Regulation, IN u8 *Band, IN u8 *Bandwidth, IN u8 *RateSection, IN u8 *RfPath, IN u8 *Channel, IN u8 *PowerLimit ) { PADAPTER Adapter = pDM_Odm->Adapter; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 regulation = 0, bandwidth = 0, rateSection = 0, channel; s8 powerLimit = 0, prevPowerLimit, channelIndex; if (0) DBG_871X("Index of power limit table [band %s][regulation %s][bw %s][rate section %s][rf path %s][chnl %s][val %s]\n" , Band, Regulation, Bandwidth, RateSection, RfPath, Channel, PowerLimit); if (GetU1ByteIntegerFromStringInDecimal((s8 *)Channel, &channel) == _FALSE || GetU1ByteIntegerFromStringInDecimal((s8 *)PowerLimit, &powerLimit) == _FALSE ){ DBG_871X_LEVEL(_drv_always_, "Illegal index of power limit table [ch %s][val %s]\n", Channel, PowerLimit); return; } powerLimit = powerLimit > MAX_POWER_INDEX ? MAX_POWER_INDEX : powerLimit; if (eqNByte(Regulation, (u8 *)("FCC"), 3)) regulation = TXPWR_LMT_FCC; else if (eqNByte(Regulation, (u8 *)("MKK"), 3)) regulation = TXPWR_LMT_MKK; else if (eqNByte(Regulation, (u8 *)("ETSI"), 4)) regulation = TXPWR_LMT_ETSI; else if (eqNByte(Regulation, (u8 *)("WW13"), 4)) regulation = TXPWR_LMT_WW; else { DBG_871X_LEVEL(_drv_always_, "unknown regulation:%s", Regulation); return; } if (eqNByte(RateSection, (u8 *)("CCK"), 3) && eqNByte(RfPath, (u8 *)("1T"), 2)) rateSection = CCK; else if (eqNByte(RateSection, (u8 *)("OFDM"), 4) && eqNByte(RfPath, (u8 *)("1T"), 2)) rateSection = OFDM; else if (eqNByte(RateSection, (u8 *)("HT"), 2) && eqNByte(RfPath, (u8 *)("1T"), 2)) rateSection = HT_1SS; else if (eqNByte(RateSection, (u8 *)("HT"), 2) && eqNByte(RfPath, (u8 *)("2T"), 2)) rateSection = HT_2SS; else if (eqNByte(RateSection, (u8 *)("HT"), 2) && eqNByte(RfPath, (u8 *)("3T"), 2)) rateSection = HT_3SS; else if (eqNByte(RateSection, (u8 *)("HT"), 2) && eqNByte(RfPath, (u8 *)("4T"), 2)) rateSection = HT_4SS; else if (eqNByte(RateSection, (u8 *)("VHT"), 3) && eqNByte(RfPath, (u8 *)("1T"), 2)) rateSection = VHT_1SS; else if (eqNByte(RateSection, (u8 *)("VHT"), 3) && eqNByte(RfPath, (u8 *)("2T"), 2)) rateSection = VHT_2SS; else if (eqNByte(RateSection, (u8 *)("VHT"), 3) && eqNByte(RfPath, (u8 *)("3T"), 2)) rateSection = VHT_3SS; else if (eqNByte(RateSection, (u8 *)("VHT"), 3) && eqNByte(RfPath, (u8 *)("4T"), 2)) rateSection = VHT_4SS; else { DBG_871X_LEVEL(_drv_always_, "Wrong rate section: (%s,%s)\n", RateSection, RfPath); return; } if (eqNByte(Bandwidth, (u8 *)("20M"), 3)) bandwidth = CHANNEL_WIDTH_20; else if (eqNByte(Bandwidth, (u8 *)("40M"), 3)) bandwidth = CHANNEL_WIDTH_40; else if (eqNByte(Bandwidth, (u8 *)("80M"), 3)) bandwidth = CHANNEL_WIDTH_80; else { DBG_871X_LEVEL(_drv_always_, "unknown bandwidth: %s\n", Bandwidth); return; } if (eqNByte(Band, (u8 *)("2.4G"), 4)) { channelIndex = phy_GetChannelIndexOfTxPowerLimit(BAND_ON_2_4G, channel); if (channelIndex == -1) { DBG_871X_LEVEL(_drv_always_, "unsupported channel: %d at 2.4G\n", channel); return; } if (bandwidth >= MAX_2_4G_BANDWIDTH_NUM) { DBG_871X_LEVEL(_drv_always_, "unsupported bandwidth: %s at 2.4G\n", Bandwidth); return; } prevPowerLimit = pHalData->TxPwrLimit_2_4G[regulation][bandwidth][rateSection][channelIndex][RF_PATH_A]; if (prevPowerLimit != MAX_POWER_INDEX) DBG_871X_LEVEL(_drv_always_, "duplicate tx power limit combination [band %s][regulation %s][bw %s][rate section %s][rf path %s][chnl %s]\n" , Band, Regulation, Bandwidth, RateSection, RfPath, Channel); if (powerLimit < prevPowerLimit) pHalData->TxPwrLimit_2_4G[regulation][bandwidth][rateSection][channelIndex][RF_PATH_A] = powerLimit; if (0) DBG_871X("2.4G Band value : [regulation %d][bw %d][rate_section %d][chnl %d][val %d]\n" , regulation, bandwidth, rateSection, channelIndex, pHalData->TxPwrLimit_2_4G[regulation][bandwidth][rateSection][channelIndex][ODM_RF_PATH_A]); } else if (eqNByte(Band, (u8 *)("5G"), 2)) { channelIndex = phy_GetChannelIndexOfTxPowerLimit(BAND_ON_5G, channel); if (channelIndex == -1) { DBG_871X_LEVEL(_drv_always_, "unsupported channel: %d at 5G\n", channel); return; } prevPowerLimit = pHalData->TxPwrLimit_5G[regulation][bandwidth][rateSection][channelIndex][RF_PATH_A]; if (prevPowerLimit != MAX_POWER_INDEX) DBG_871X_LEVEL(_drv_always_, "duplicate tx power limit combination [band %s][regulation %s][bw %s][rate section %s][rf path %s][chnl %s]\n" , Band, Regulation, Bandwidth, RateSection, RfPath, Channel); if (powerLimit < prevPowerLimit) pHalData->TxPwrLimit_5G[regulation][bandwidth][rateSection][channelIndex][RF_PATH_A] = powerLimit; if (0) DBG_871X("5G Band value : [regulation %d][bw %d][rate_section %d][chnl %d][val %d]\n" , regulation, bandwidth, rateSection, channel, pHalData->TxPwrLimit_5G[regulation][bandwidth][rateSection][channelIndex][RF_PATH_A]); } else { DBG_871X_LEVEL(_drv_always_, "Cannot recognize the band info in %s\n", Band); return; } } u8 PHY_GetTxPowerIndex( IN PADAPTER pAdapter, IN u8 RFPath, IN u8 Rate, IN CHANNEL_WIDTH BandWidth, IN u8 Channel ) { u8 txPower = 0x3E; if (IS_HARDWARE_TYPE_8814A(pAdapter)) { #if (RTL8814A_SUPPORT == 1) txPower = PHY_GetTxPowerIndex_8814A(pAdapter, RFPath, Rate, BandWidth, Channel); #endif } else if (IS_HARDWARE_TYPE_JAGUAR(pAdapter)) { #if ((RTL8812A_SUPPORT == 1) || (RTL8821A_SUPPORT == 1)) txPower = PHY_GetTxPowerIndex_8812A(pAdapter, RFPath, Rate, BandWidth, Channel); #endif } else if (IS_HARDWARE_TYPE_8723B(pAdapter)) { #if (RTL8723B_SUPPORT == 1) txPower = PHY_GetTxPowerIndex_8723B(pAdapter, RFPath, Rate, BandWidth, Channel); #endif } else if (IS_HARDWARE_TYPE_8703B(pAdapter)) { #if (RTL8703B_SUPPORT == 1) txPower = PHY_GetTxPowerIndex_8703B(pAdapter, RFPath, Rate, BandWidth, Channel); #endif } else if (IS_HARDWARE_TYPE_8192E(pAdapter)) { #if (RTL8192E_SUPPORT==1) txPower = PHY_GetTxPowerIndex_8192E(pAdapter, RFPath, Rate, BandWidth, Channel); #endif } else if (IS_HARDWARE_TYPE_8188E(pAdapter)) { #if (RTL8188E_SUPPORT==1) txPower = PHY_GetTxPowerIndex_8188E(pAdapter, RFPath, Rate, BandWidth, Channel); #endif } else if (IS_HARDWARE_TYPE_8188F(pAdapter)) { #if (RTL8188F_SUPPORT == 1) txPower = PHY_GetTxPowerIndex_8188F(pAdapter, RFPath, Rate, BandWidth, Channel); #endif } return txPower; } VOID PHY_SetTxPowerIndex( IN PADAPTER pAdapter, IN u32 PowerIndex, IN u8 RFPath, IN u8 Rate ) { if (IS_HARDWARE_TYPE_8814A(pAdapter)) { #if (RTL8814A_SUPPORT == 1) PHY_SetTxPowerIndex_8814A(pAdapter, PowerIndex, RFPath, Rate); #endif } else if (IS_HARDWARE_TYPE_JAGUAR(pAdapter)) { #if ((RTL8812A_SUPPORT==1) || (RTL8821A_SUPPORT == 1)) PHY_SetTxPowerIndex_8812A( pAdapter, PowerIndex, RFPath, Rate ); #endif } else if (IS_HARDWARE_TYPE_8723B(pAdapter)) { #if (RTL8723B_SUPPORT==1) PHY_SetTxPowerIndex_8723B( pAdapter, PowerIndex, RFPath, Rate ); #endif } else if (IS_HARDWARE_TYPE_8703B(pAdapter)) { #if (RTL8703B_SUPPORT==1) PHY_SetTxPowerIndex_8703B( pAdapter, PowerIndex, RFPath, Rate ); #endif } else if (IS_HARDWARE_TYPE_8192E(pAdapter)) { #if (RTL8192E_SUPPORT==1) PHY_SetTxPowerIndex_8192E( pAdapter, PowerIndex, RFPath, Rate ); #endif } else if (IS_HARDWARE_TYPE_8188E(pAdapter)) { #if (RTL8188E_SUPPORT==1) PHY_SetTxPowerIndex_8188E( pAdapter, PowerIndex, RFPath, Rate ); #endif } else if (IS_HARDWARE_TYPE_8188F(pAdapter)) { #if (RTL8188F_SUPPORT == 1) PHY_SetTxPowerIndex_8188F(pAdapter, PowerIndex, RFPath, Rate); #endif } } bool phy_is_tx_power_limit_needed(_adapter *adapter) { HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); struct registry_priv *regsty = dvobj_to_regsty(adapter_to_dvobj(adapter)); if (regsty->RegEnableTxPowerLimit == 1 || (regsty->RegEnableTxPowerLimit == 2 && hal_data->EEPROMRegulatory == 1)) return _TRUE; return _FALSE; } bool phy_is_tx_power_by_rate_needed(_adapter *adapter) { HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); struct registry_priv *regsty = dvobj_to_regsty(adapter_to_dvobj(adapter)); if (regsty->RegEnableTxPowerByRate == 1 || (regsty->RegEnableTxPowerByRate == 2 && hal_data->EEPROMRegulatory != 2)) return _TRUE; return _FALSE; } int phy_load_tx_power_by_rate(_adapter *adapter, const char *hal_file_name, u8 force) { HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); struct registry_priv *regsty = dvobj_to_regsty(adapter_to_dvobj(adapter)); int ret = _FAIL; if (!force && !rtw_is_phy_file_readable(hal_file_name) && hal_data->txpwr_by_rate_loaded == 1 && hal_data->txpwr_by_rate_from_file == 0 ) { /* No file and already load default(compile-time) table */ ret = _SUCCESS; goto exit; } hal_data->txpwr_by_rate_loaded = 0; PHY_InitTxPowerByRate(adapter); /* tx power limit is based on tx power by rate */ hal_data->txpwr_limit_loaded = 0; #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE if (rtw_is_phy_file_readable(hal_file_name) && phy_ConfigBBWithPgParaFile(adapter, hal_file_name) == _SUCCESS ) { hal_data->txpwr_by_rate_from_file = 1; goto post_hdl; } #endif #ifdef CONFIG_EMBEDDED_FWIMG if (HAL_STATUS_SUCCESS == ODM_ConfigBBWithHeaderFile(&hal_data->odmpriv, CONFIG_BB_PHY_REG_PG)) { DBG_871X("default power by rate loaded\n"); hal_data->txpwr_by_rate_from_file = 0; goto post_hdl; } #endif DBG_871X_LEVEL(_drv_err_, "%s():Read Tx power by rate fail\n", __func__); goto exit; post_hdl: if (hal_data->odmpriv.PhyRegPgValueType != PHY_REG_PG_EXACT_VALUE) { rtw_warn_on(1); goto exit; } PHY_TxPowerByRateConfiguration(adapter); hal_data->txpwr_by_rate_loaded = 1; ret = _SUCCESS; exit: return ret; } int phy_load_tx_power_limit(_adapter *adapter, const char *hal_file_name, u8 force) { HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); struct registry_priv *regsty = dvobj_to_regsty(adapter_to_dvobj(adapter)); int ret = _FAIL; if (!force && !rtw_is_phy_file_readable(hal_file_name) && hal_data->txpwr_by_rate_loaded == 1 && hal_data->txpwr_by_rate_from_file == 0 ) { /* No file and already load default(compile-time) table */ ret = _SUCCESS; goto exit; } hal_data->txpwr_limit_loaded = 0; PHY_InitTxPowerLimit(adapter); if (!hal_data->txpwr_by_rate_loaded && regsty->target_tx_pwr_valid != _TRUE) { DBG_871X_LEVEL(_drv_err_, "%s():Read Tx power limit before target tx power is specify\n", __func__); goto exit; } #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE if (rtw_is_phy_file_readable(hal_file_name) && PHY_ConfigRFWithPowerLimitTableParaFile(adapter, hal_file_name) == _SUCCESS ) { hal_data->txpwr_limit_from_file = 1; goto post_hdl; } #endif #ifdef CONFIG_EMBEDDED_FWIMG if (HAL_STATUS_SUCCESS == ODM_ConfigRFWithHeaderFile(&hal_data->odmpriv, CONFIG_RF_TXPWR_LMT, (ODM_RF_RADIO_PATH_E)0)) { DBG_871X("default power limit loaded\n"); hal_data->txpwr_limit_from_file = 0; goto post_hdl; } #endif DBG_871X_LEVEL(_drv_err_, "%s():Read Tx power limit fail\n", __func__); goto exit; post_hdl: PHY_ConvertTxPowerLimitToPowerIndex(adapter); hal_data->txpwr_limit_loaded = 1; ret = _SUCCESS; exit: return ret; } const char *hal_phy_reg_pg_str(_adapter *adapter) { u8 interface_type = 0; const char *str = NULL; interface_type = rtw_get_intf_type(adapter); switch (rtw_get_chip_type(adapter)) { #ifdef CONFIG_RTL8723B case RTL8723B: str = RTL8723B_PHY_REG_PG; break; #endif #ifdef CONFIG_RTL8703B case RTL8703B: str = RTL8703B_PHY_REG_PG; break; #endif #ifdef CONFIG_RTL8188E case RTL8188E: str = RTL8188E_PHY_REG_PG; break; #endif #ifdef CONFIG_RTL8188F case RTL8188F: str = RTL8188F_PHY_REG_PG; break; #endif #ifdef CONFIG_RTL8812A case RTL8812: str = RTL8812_PHY_REG_PG; break; #endif #ifdef CONFIG_RTL8821A case RTL8821: str = RTL8821_PHY_REG_PG; break; #endif #ifdef CONFIG_RTL8192E case RTL8192E: str = RTL8192E_PHY_REG_PG; break; #endif #ifdef CONFIG_RTL8814A case RTL8814A: str = RTL8814A_PHY_REG_PG; break; #endif } if (str == NULL) { DBG_871X_LEVEL(_drv_err_, "%s: unknown chip_type:%u\n" , __func__, rtw_get_chip_type(adapter)); } return str; } const char *hal_txpwr_lmt_str(_adapter *adapter) { u8 interface_type = 0; const char *str = NULL; interface_type = rtw_get_intf_type(adapter); switch (rtw_get_chip_type(adapter)) { #ifdef CONFIG_RTL8723B case RTL8723B: str = RTL8723B_TXPWR_LMT; break; #endif #ifdef CONFIG_RTL8703B case RTL8703B: str = RTL8703B_TXPWR_LMT; break; #endif #ifdef CONFIG_RTL8188E case RTL8188E: str = RTL8188E_TXPWR_LMT; break; #endif #ifdef CONFIG_RTL8188F case RTL8188F: str = RTL8188F_TXPWR_LMT; break; #endif #ifdef CONFIG_RTL8812A case RTL8812: str = RTL8812_TXPWR_LMT; break; #endif #ifdef CONFIG_RTL8821A case RTL8821: str = RTL8821_TXPWR_LMT; break; #endif #ifdef CONFIG_RTL8192E case RTL8192E: str = RTL8192E_TXPWR_LMT; break; #endif #ifdef CONFIG_RTL8814A case RTL8814A: str = RTL8814A_TXPWR_LMT; break; #endif } if (str == NULL) { DBG_871X_LEVEL(_drv_err_, "%s: unknown chip_type:%u\n" , __func__, rtw_get_chip_type(adapter)); } return str; } void phy_load_tx_power_ext_info(_adapter *adapter, u8 chk_file, u8 force) { struct registry_priv *regsty = adapter_to_regsty(adapter); const char *str = NULL; /* check registy target tx power */ regsty->target_tx_pwr_valid = rtw_regsty_chk_target_tx_power_valid(adapter); /* power by rate and limit */ if (phy_is_tx_power_by_rate_needed(adapter) || (phy_is_tx_power_limit_needed(adapter) && regsty->target_tx_pwr_valid != _TRUE) ) { str = chk_file ? hal_phy_reg_pg_str(adapter) : NULL; phy_load_tx_power_by_rate(adapter, str, force); } if (phy_is_tx_power_limit_needed(adapter)) { str = chk_file ? hal_txpwr_lmt_str(adapter) : NULL; phy_load_tx_power_limit(adapter, str, force); } } inline void phy_reload_tx_power_ext_info(_adapter *adapter) { phy_load_tx_power_ext_info(adapter, 1, 1); } inline void phy_reload_default_tx_power_ext_info(_adapter *adapter) { phy_load_tx_power_ext_info(adapter, 0, 1); } void dump_tx_power_ext_info(void *sel, _adapter *adapter) { struct registry_priv *regsty = adapter_to_regsty(adapter); HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); if (phy_is_tx_power_by_rate_needed(adapter) || (phy_is_tx_power_limit_needed(adapter) && regsty->target_tx_pwr_valid != _TRUE)) DBG_871X_SEL_NL(sel, "target_tx_power: from powr by rate\n"); else if (regsty->target_tx_pwr_valid == _TRUE) DBG_871X_SEL_NL(sel, "target_tx_power: from registry\n"); else DBG_871X_SEL_NL(sel, "target_tx_power: unavailable\n"); DBG_871X_SEL_NL(sel, "tx_power_by_rate: %s, %s, %s\n" , phy_is_tx_power_by_rate_needed(adapter) ? "enabled" : "disabled" , hal_data->txpwr_by_rate_loaded ? "loaded" : "unloaded" , hal_data->txpwr_by_rate_from_file ? "file" : "default" ); DBG_871X_SEL_NL(sel, "tx_power_limit: %s, %s, %s\n" , phy_is_tx_power_limit_needed(adapter) ? "enabled" : "disabled" , hal_data->txpwr_limit_loaded ? "loaded" : "unloaded" , hal_data->txpwr_limit_from_file ? "file" : "default" ); } void dump_target_tx_power(void *sel, _adapter *adapter) { struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter); HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); struct registry_priv *regsty = adapter_to_regsty(adapter); int path, tx_num, band, rs; u8 target; for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) { if (!hal_is_band_support(adapter, band)) continue; for (path = 0; path < RF_PATH_MAX; path++) { if (path >= hal_data->NumTotalRFPath) break; DBG_871X_SEL_NL(sel, "[%s][%c]\n", band_str(band), rf_path_char(path)); for (rs = 0; rs < RATE_SECTION_NUM; rs++) { tx_num = rate_section_to_tx_num(rs); if (tx_num >= hal_spec->nss_num) continue; if (band == BAND_ON_5G && IS_CCK_RATE_SECTION(rs)) continue; if (IS_VHT_RATE_SECTION(rs) && !IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(adapter)) continue; target = phy_get_target_tx_power(adapter, band, path, rs); if (target % 2) DBG_871X_SEL(sel, "%7s: %2d.5\n", rate_section_str(rs), target / 2); else DBG_871X_SEL(sel, "%7s: %4d\n", rate_section_str(rs), target / 2); } } } exit: return; } void dump_tx_power_by_rate(void *sel, _adapter *adapter) { struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter); HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); int path, tx_num, band, n, rs; u8 rate_num, max_rate_num, base; s8 by_rate_offset; for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) { if (!hal_is_band_support(adapter, band)) continue; for (path = 0; path < RF_PATH_MAX; path++) { if (path >= hal_data->NumTotalRFPath) break; DBG_871X_SEL_NL(sel, "[%s][%c]\n", band_str(band), rf_path_char(path)); for (rs = 0; rs < RATE_SECTION_NUM; rs++) { tx_num = rate_section_to_tx_num(rs); if (tx_num >= hal_spec->nss_num) continue; if (band == BAND_ON_5G && IS_CCK_RATE_SECTION(rs)) continue; if (IS_VHT_RATE_SECTION(rs) && !IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(adapter)) continue; if (IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(adapter)) max_rate_num = 10; else max_rate_num = 8; rate_num = rate_section_rate_num(rs); base = PHY_GetTxPowerByRateBase(adapter, band, path, tx_num, rs); DBG_871X_SEL_NL(sel, "%7s: ", rate_section_str(rs)); /* dump power by rate in db */ for (n = rate_num - 1; n >= 0; n--) { by_rate_offset = PHY_GetTxPowerByRate(adapter, band, path, tx_num, rates_by_sections[rs].rates[n]); if ((base + by_rate_offset) % 2) DBG_871X_SEL(sel, "%2d.5 ", (base + by_rate_offset) / 2); else DBG_871X_SEL(sel, "%4d ", (base + by_rate_offset) / 2); } for (n = 0; n < max_rate_num - rate_num; n++) DBG_871X_SEL(sel, "%4s ", ""); DBG_871X_SEL(sel, "|"); /* dump power by rate in offset */ for (n = rate_num - 1; n >= 0; n--) { by_rate_offset = PHY_GetTxPowerByRate(adapter, band, path, tx_num, rates_by_sections[rs].rates[n]); DBG_871X_SEL(sel, "%3d ", by_rate_offset); } DBG_871X_SEL_NL(sel, "\n"); } } } } void dump_tx_power_limit(void *sel, _adapter *adapter) { struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter); HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); struct registry_priv *regsty = dvobj_to_regsty(adapter_to_dvobj(adapter)); int bw, band, ch_num, rs, i, path; u8 ch, n, rd; if (IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(adapter)) DBG_871X_SEL_NL(sel, "tx_pwr_lmt_5g_20_40_ref:0x%02x\n", hal_data->tx_pwr_lmt_5g_20_40_ref); for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) { if (!hal_is_band_support(adapter, band)) continue; rd = (band == BAND_ON_2_4G ? hal_data->Regulation2_4G : hal_data->Regulation5G); for (bw = 0; bw < MAX_5G_BANDWIDTH_NUM; bw++) { if (bw >= CHANNEL_WIDTH_160) break; if (band == BAND_ON_2_4G && bw >= CHANNEL_WIDTH_80) break; if (band == BAND_ON_2_4G) ch_num = CENTER_CH_2G_NUM; else ch_num = center_chs_5g_num(bw); if (ch_num == 0) { rtw_warn_on(1); break; } for (rs = 0; rs < RATE_SECTION_NUM; rs++) { if (band == BAND_ON_2_4G && IS_VHT_RATE_SECTION(rs)) continue; if (band == BAND_ON_5G && IS_CCK_RATE_SECTION(rs)) continue; if (bw > CHANNEL_WIDTH_20 && (IS_CCK_RATE_SECTION(rs) || IS_OFDM_RATE_SECTION(rs))) continue; if (bw > CHANNEL_WIDTH_40 && IS_HT_RATE_SECTION(rs)) continue; if (rate_section_to_tx_num(rs) >= hal_spec->nss_num) continue; if (IS_VHT_RATE_SECTION(rs) && !IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(adapter)) continue; /* by pass 5G 20M, 40M pure reference */ if (band == BAND_ON_5G && (bw == CHANNEL_WIDTH_20 || bw == CHANNEL_WIDTH_40)) { if (hal_data->tx_pwr_lmt_5g_20_40_ref == TX_PWR_LMT_REF_HT_FROM_VHT) { if (IS_HT_RATE_SECTION(rs)) continue; } else if (hal_data->tx_pwr_lmt_5g_20_40_ref == TX_PWR_LMT_REF_VHT_FROM_HT) { if (IS_VHT_RATE_SECTION(rs) && bw <= CHANNEL_WIDTH_40) continue; } } DBG_871X_SEL_NL(sel, "[%s][%s][%s]\n" , band_str(band) , ch_width_str(bw) , rate_section_str(rs) ); /* header for limit in db */ DBG_871X_SEL_NL(sel, "%3s %5s %5s %5s %5s " , "ch" , (rd == TXPWR_LMT_FCC ? "*FCC" : "FCC") , (rd == TXPWR_LMT_ETSI ? "*ETSI" : "ETSI") , (rd == TXPWR_LMT_MKK ? "*MKK" : "MKK") , (rd == TXPWR_LMT_WW ? "*WW" : "WW") ); /* header for limit offset */ for (path = 0; path < RF_PATH_MAX; path++) { if (path >= hal_data->NumTotalRFPath) break; DBG_871X_SEL(sel, "|%3c %3c %3c %3c " , (rd == TXPWR_LMT_FCC ? rf_path_char(path) : ' ') , (rd == TXPWR_LMT_ETSI ? rf_path_char(path) : ' ') , (rd == TXPWR_LMT_MKK ? rf_path_char(path) : ' ') , (rd == TXPWR_LMT_WW ? rf_path_char(path) : ' ') ); } DBG_871X_SEL(sel, "\n"); for (n = 0; n < ch_num; n++) { s8 limit_idx[RF_PATH_MAX][MAX_REGULATION_NUM]; s8 limit_offset[MAX_REGULATION_NUM]; u8 base; if (band == BAND_ON_2_4G) ch = n + 1; else ch = center_chs_5g(bw, n); if (ch == 0) { rtw_warn_on(1); break; } /* dump limit in db (calculate from path A) */ limit_offset[0] = PHY_GetTxPowerLimit(adapter, 3, band, bw, RF_PATH_A, rates_by_sections[rs].rates[0], ch); /* FCC */ limit_offset[1] = PHY_GetTxPowerLimit(adapter, 1, band, bw, RF_PATH_A, rates_by_sections[rs].rates[0], ch); /* ETSI */ limit_offset[2] = PHY_GetTxPowerLimit(adapter, 2, band, bw, RF_PATH_A, rates_by_sections[rs].rates[0], ch); /* MKK */ limit_offset[3] = PHY_GetTxPowerLimit(adapter, 4, band, bw, RF_PATH_A, rates_by_sections[rs].rates[0], ch); /* WW */ base = phy_get_target_tx_power(adapter, band, RF_PATH_A, rs); DBG_871X_SEL_NL(sel, "%3u ", ch); for (i = 0; i < MAX_REGULATION_NUM; i++) { if (limit_offset[i] == MAX_POWER_INDEX) { limit_idx[0][i] = MAX_POWER_INDEX; DBG_871X_SEL(sel, "%5s ", "NA"); } else { limit_idx[0][i] = limit_offset[i] + base; if ((limit_offset[i] + base) % 2) DBG_871X_SEL(sel, "%3d.5 ", (limit_offset[i] + base) / 2); else DBG_871X_SEL(sel, "%5d ", (limit_offset[i] + base) / 2); } } /* dump limit offset of each path */ for (path = 0; path < RF_PATH_MAX; path++) { if (path >= hal_data->NumTotalRFPath) break; limit_offset[0] = PHY_GetTxPowerLimit(adapter, 3, band, bw, path, rates_by_sections[rs].rates[0], ch); /* FCC */ limit_offset[1] = PHY_GetTxPowerLimit(adapter, 1, band, bw, path, rates_by_sections[rs].rates[0], ch); /* ETSI */ limit_offset[2] = PHY_GetTxPowerLimit(adapter, 2, band, bw, path, rates_by_sections[rs].rates[0], ch); /* MKK */ limit_offset[3] = PHY_GetTxPowerLimit(adapter, 4, band, bw, path, rates_by_sections[rs].rates[0], ch); /* WW */ base = phy_get_target_tx_power(adapter, band, path, rs); DBG_871X_SEL(sel, "|"); for (i = 0; i < MAX_REGULATION_NUM; i++) { if (limit_offset[i] == MAX_POWER_INDEX) { limit_idx[path][i] = MAX_POWER_INDEX; DBG_871X_SEL(sel, "%3s ", "NA"); } else { limit_idx[path][i] = limit_offset[i] + base; DBG_871X_SEL(sel, "%3d ", limit_offset[i]); } } } /* compare limit_idx of each path, print 'x' when mismatch */ if (hal_data->NumTotalRFPath > 1) { for (i = 0; i < MAX_REGULATION_NUM; i++) { for (path = 0; path < RF_PATH_MAX; path++) { if (path >= hal_data->NumTotalRFPath) break; if (limit_idx[path][i] != limit_idx[(path + 1) % hal_data->NumTotalRFPath][i]) break; } if (path >= hal_data->NumTotalRFPath) DBG_871X_SEL(sel, " "); else DBG_871X_SEL(sel, "x"); } } DBG_871X_SEL(sel, "\n"); } DBG_871X_SEL_NL(sel, "\n"); } } } } int rtw_is_phy_file_readable(const char *hal_file_name) { #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE if (hal_file_name) { rtw_merge_string(file__path, PATH_LENGTH_MAX, rtw_phy_file_path, hal_file_name); return rtw_is_file_readable(file__path); } #endif return _FALSE; } #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE int phy_ConfigMACWithParaFile( IN PADAPTER Adapter, IN char* pFileName ) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; char *szLine, *ptmp; u32 u4bRegOffset, u4bRegValue, u4bMove; if(!(Adapter->registrypriv.load_phy_file & LOAD_MAC_PARA_FILE)) return rtStatus; _rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if ((pHalData->mac_reg_len == 0) && (pHalData->mac_reg == NULL)) { rtw_merge_string(file__path, PATH_LENGTH_MAX, rtw_phy_file_path, pFileName); if (rtw_is_file_readable(file__path) == _TRUE) { rlen = rtw_retrieve_from_file(file__path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pHalData->mac_reg = rtw_zvmalloc(rlen); if(pHalData->mac_reg) { _rtw_memcpy(pHalData->mac_reg, pHalData->para_file_buf, rlen); pHalData->mac_reg_len = rlen; } else { DBG_871X("%s mac_reg alloc fail !\n",__FUNCTION__); } } } } else { if ((pHalData->mac_reg_len != 0) && (pHalData->mac_reg != NULL)) { _rtw_memcpy(pHalData->para_file_buf, pHalData->mac_reg, pHalData->mac_reg_len); rtStatus = _SUCCESS; } else { DBG_871X("%s(): Critical Error !!!\n",__FUNCTION__); } } if (rtStatus == _SUCCESS) { ptmp = pHalData->para_file_buf; for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) { if(!IsCommentString(szLine)) { // Get 1st hex value as register offset if(GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) { if(u4bRegOffset == 0xffff) { // Ending. break; } // Get 2nd hex value as register value. szLine += u4bMove; if(GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) { rtw_write8(Adapter, u4bRegOffset, (u8)u4bRegValue); } } } } } else { DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName); } return rtStatus; } int phy_ConfigBBWithParaFile( IN PADAPTER Adapter, IN char* pFileName, IN u32 ConfigType ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; char *szLine, *ptmp; u32 u4bRegOffset, u4bRegValue, u4bMove; char *pBuf = NULL; u32 *pBufLen = NULL; if(!(Adapter->registrypriv.load_phy_file & LOAD_BB_PARA_FILE)) return rtStatus; switch(ConfigType) { case CONFIG_BB_PHY_REG: pBuf = pHalData->bb_phy_reg; pBufLen = &pHalData->bb_phy_reg_len; break; case CONFIG_BB_AGC_TAB: pBuf = pHalData->bb_agc_tab; pBufLen = &pHalData->bb_agc_tab_len; break; default: DBG_871X("Unknown ConfigType!! %d\r\n", ConfigType); break; } _rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if ((pBufLen != NULL) && (*pBufLen == 0) && (pBuf == NULL)) { rtw_merge_string(file__path, PATH_LENGTH_MAX, rtw_phy_file_path, pFileName); if (rtw_is_file_readable(file__path) == _TRUE) { rlen = rtw_retrieve_from_file(file__path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pBuf = rtw_zvmalloc(rlen); if(pBuf) { _rtw_memcpy(pBuf, pHalData->para_file_buf, rlen); *pBufLen = rlen; switch(ConfigType) { case CONFIG_BB_PHY_REG: pHalData->bb_phy_reg = pBuf; break; case CONFIG_BB_AGC_TAB: pHalData->bb_agc_tab = pBuf; break; } } else { DBG_871X("%s(): ConfigType %d alloc fail !\n",__FUNCTION__,ConfigType); } } } } else { if ((pBufLen != NULL) && (*pBufLen == 0) && (pBuf == NULL)) { _rtw_memcpy(pHalData->para_file_buf, pBuf, *pBufLen); rtStatus = _SUCCESS; } else { DBG_871X("%s(): Critical Error !!!\n",__FUNCTION__); } } if (rtStatus == _SUCCESS) { ptmp = pHalData->para_file_buf; for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) { if(!IsCommentString(szLine)) { // Get 1st hex value as register offset. if(GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) { if(u4bRegOffset == 0xffff) { // Ending. break; } else if (u4bRegOffset == 0xfe || u4bRegOffset == 0xffe) { #ifdef CONFIG_LONG_DELAY_ISSUE rtw_msleep_os(50); #else rtw_mdelay_os(50); #endif } else if (u4bRegOffset == 0xfd) { rtw_mdelay_os(5); } else if (u4bRegOffset == 0xfc) { rtw_mdelay_os(1); } else if (u4bRegOffset == 0xfb) { rtw_udelay_os(50); } else if (u4bRegOffset == 0xfa) { rtw_udelay_os(5); } else if (u4bRegOffset == 0xf9) { rtw_udelay_os(1); } // Get 2nd hex value as register value. szLine += u4bMove; if(GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) { //DBG_871X("[BB-ADDR]%03lX=%08lX\n", u4bRegOffset, u4bRegValue); PHY_SetBBReg(Adapter, u4bRegOffset, bMaskDWord, u4bRegValue); if (u4bRegOffset == 0xa24) pHalData->odmpriv.RFCalibrateInfo.RegA24 = u4bRegValue; // Add 1us delay between BB/RF register setting. rtw_udelay_os(1); } } } } } else { DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName); } return rtStatus; } VOID phy_DecryptBBPgParaFile( PADAPTER Adapter, char* buffer ) { u32 i = 0, j = 0; u8 map[95] = {0}; u8 currentChar; char *BufOfLines, *ptmp; //DBG_871X("=====>phy_DecryptBBPgParaFile()\n"); // 32 the ascii code of the first visable char, 126 the last one for ( i = 0; i < 95; ++i ) map[i] = ( u8 ) ( 94 - i ); ptmp = buffer; i = 0; for (BufOfLines = GetLineFromBuffer(ptmp); BufOfLines != NULL; BufOfLines = GetLineFromBuffer(ptmp)) { //DBG_871X("Encrypted Line: %s\n", BufOfLines); for ( j = 0; j < strlen(BufOfLines); ++j ) { currentChar = BufOfLines[j]; if ( currentChar == '\0' ) break; currentChar -= (u8) ( ( ( ( i + j ) * 3 ) % 128 ) ); BufOfLines[j] = map[currentChar - 32] + 32; } //DBG_871X("Decrypted Line: %s\n", BufOfLines ); if (strlen(BufOfLines) != 0) i++; BufOfLines[strlen(BufOfLines)] = '\n'; } } int phy_ParseBBPgParaFile( PADAPTER Adapter, char* buffer ) { int rtStatus = _SUCCESS; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); char *szLine, *ptmp; u32 u4bRegOffset, u4bRegMask, u4bRegValue; u32 u4bMove; BOOLEAN firstLine = _TRUE; u8 tx_num = 0; u8 band = 0, rf_path = 0; //DBG_871X("=====>phy_ParseBBPgParaFile()\n"); if ( Adapter->registrypriv.RegDecryptCustomFile == 1 ) phy_DecryptBBPgParaFile( Adapter, buffer); ptmp = buffer; for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) { if (isAllSpaceOrTab(szLine, sizeof(*szLine))) continue; if(!IsCommentString(szLine)) { // Get header info (relative value or exact value) if ( firstLine ) { if ( eqNByte( szLine, (u8 *)("#[v1]"), 5 ) ) { pHalData->odmpriv.PhyRegPgVersion = szLine[3] - '0'; //DBG_871X("This is a new format PHY_REG_PG.txt \n"); } else if ( eqNByte( szLine, (u8 *)("#[v0]"), 5 )) { pHalData->odmpriv.PhyRegPgVersion = szLine[3] - '0'; //DBG_871X("This is a old format PHY_REG_PG.txt ok\n"); } else { DBG_871X("The format in PHY_REG_PG are invalid %s\n", szLine); return _FAIL; } if ( eqNByte( szLine + 5, (u8 *)("[Exact]#"), 8 ) ) { pHalData->odmpriv.PhyRegPgValueType = PHY_REG_PG_EXACT_VALUE; //DBG_871X("The values in PHY_REG_PG are exact values ok\n"); firstLine = _FALSE; continue; } else if ( eqNByte( szLine + 5, (pu1Byte)("[Relative]#"), 11 ) ) { pHalData->odmpriv.PhyRegPgValueType = PHY_REG_PG_RELATIVE_VALUE; //DBG_871X("The values in PHY_REG_PG are relative values ok\n"); firstLine = _FALSE; continue; } else { DBG_871X("The values in PHY_REG_PG are invalid %s\n", szLine); return _FAIL; } } if ( pHalData->odmpriv.PhyRegPgVersion == 0 ) { // Get 1st hex value as register offset. if(GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) { szLine += u4bMove; if(u4bRegOffset == 0xffff) { // Ending. break; } // Get 2nd hex value as register mask. if ( GetHexValueFromString(szLine, &u4bRegMask, &u4bMove) ) szLine += u4bMove; else return _FAIL; if ( pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_RELATIVE_VALUE ) { // Get 3rd hex value as register value. if(GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) { PHY_StoreTxPowerByRate(Adapter, 0, 0, 1, u4bRegOffset, u4bRegMask, u4bRegValue); //DBG_871X("[ADDR] %03X=%08X Mask=%08x\n", u4bRegOffset, u4bRegValue, u4bRegMask); } else { return _FAIL; } } else if ( pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_EXACT_VALUE ) { u32 combineValue = 0; u8 integer = 0, fraction = 0; if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) ) szLine += u4bMove; else return _FAIL; integer *= 2; if ( fraction == 5 ) integer += 1; combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) ); //DBG_871X(" %d", integer ); if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) ) szLine += u4bMove; else return _FAIL; integer *= 2; if ( fraction == 5 ) integer += 1; combineValue <<= 8; combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) ); //DBG_871X(" %d", integer ); if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) ) szLine += u4bMove; else return _FAIL; integer *= 2; if ( fraction == 5 ) integer += 1; combineValue <<= 8; combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) ); //DBG_871X(" %d", integer ); if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) ) szLine += u4bMove; else return _FAIL; integer *= 2; if ( fraction == 5 ) integer += 1; combineValue <<= 8; combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) ); //DBG_871X(" %d", integer ); PHY_StoreTxPowerByRate(Adapter, 0, 0, 1, u4bRegOffset, u4bRegMask, combineValue); //DBG_871X("[ADDR] 0x%3x = 0x%4x\n", u4bRegOffset, combineValue ); } } } else if ( pHalData->odmpriv.PhyRegPgVersion > 0 ) { u32 index = 0, cnt = 0; if ( eqNByte( szLine, "0xffff", 6 ) ) break; if( !eqNByte( "#[END]#", szLine, 7 ) ) { // load the table label info if ( szLine[0] == '#' ) { index = 0; if ( eqNByte( szLine, "#[2.4G]" , 7 ) ) { band = BAND_ON_2_4G; index += 8; } else if ( eqNByte( szLine, "#[5G]", 5) ) { band = BAND_ON_5G; index += 6; } else { DBG_871X("Invalid band %s in PHY_REG_PG.txt \n", szLine ); return _FAIL; } rf_path= szLine[index] - 'A'; //DBG_871X(" Table label Band %d, RfPath %d\n", band, rf_path ); } else // load rows of tables { if ( szLine[1] == '1' ) tx_num = RF_1TX; else if ( szLine[1] == '2' ) tx_num = RF_2TX; else if ( szLine[1] == '3' ) tx_num = RF_3TX; else if ( szLine[1] == '4' ) tx_num = RF_4TX; else { DBG_871X("Invalid row in PHY_REG_PG.txt '%c'(%d)\n", szLine[1], szLine[1]); return _FAIL; } while ( szLine[index] != ']' ) ++index; ++index;// skip ] // Get 2nd hex value as register offset. szLine += index; if ( GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove) ) szLine += u4bMove; else return _FAIL; // Get 2nd hex value as register mask. if ( GetHexValueFromString(szLine, &u4bRegMask, &u4bMove) ) szLine += u4bMove; else return _FAIL; if ( pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_RELATIVE_VALUE ) { // Get 3rd hex value as register value. if(GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) { PHY_StoreTxPowerByRate(Adapter, band, rf_path, tx_num, u4bRegOffset, u4bRegMask, u4bRegValue); //DBG_871X("[ADDR] %03X (tx_num %d) =%08X Mask=%08x\n", u4bRegOffset, tx_num, u4bRegValue, u4bRegMask); } else { return _FAIL; } } else if ( pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_EXACT_VALUE ) { u32 combineValue = 0; u8 integer = 0, fraction = 0; if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) ) szLine += u4bMove; else return _FAIL; integer *= 2; if ( fraction == 5 ) integer += 1; combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) ); //DBG_871X(" %d", integer ); if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) ) szLine += u4bMove; else return _FAIL; integer *= 2; if ( fraction == 5 ) integer += 1; combineValue <<= 8; combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) ); //DBG_871X(" %d", integer ); if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) ) szLine += u4bMove; else return _FAIL; integer *= 2; if ( fraction == 5 ) integer += 1; combineValue <<= 8; combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) ); //DBG_871X(" %d", integer ); if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) ) szLine += u4bMove; else return _FAIL; integer *= 2; if ( fraction == 5 ) integer += 1; combineValue <<= 8; combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) ); //DBG_871X(" %d", integer ); PHY_StoreTxPowerByRate(Adapter, band, rf_path, tx_num, u4bRegOffset, u4bRegMask, combineValue); //DBG_871X("[ADDR] 0x%3x (tx_num %d) = 0x%4x\n", u4bRegOffset, tx_num, combineValue ); } } } } } } //DBG_871X("<=====phy_ParseBBPgParaFile()\n"); return rtStatus; } int phy_ConfigBBWithPgParaFile( IN PADAPTER Adapter, IN const char *pFileName) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; if(!(Adapter->registrypriv.load_phy_file & LOAD_BB_PG_PARA_FILE)) return rtStatus; _rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if (pHalData->bb_phy_reg_pg == NULL) { rtw_merge_string(file__path, PATH_LENGTH_MAX, rtw_phy_file_path, pFileName); if (rtw_is_file_readable(file__path) == _TRUE) { rlen = rtw_retrieve_from_file(file__path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pHalData->bb_phy_reg_pg = rtw_zvmalloc(rlen); if(pHalData->bb_phy_reg_pg) { _rtw_memcpy(pHalData->bb_phy_reg_pg, pHalData->para_file_buf, rlen); pHalData->bb_phy_reg_pg_len = rlen; } else { DBG_871X("%s bb_phy_reg_pg alloc fail !\n",__FUNCTION__); } } } } else { if ((pHalData->bb_phy_reg_pg_len != 0) && (pHalData->bb_phy_reg_pg != NULL)) { _rtw_memcpy(pHalData->para_file_buf, pHalData->bb_phy_reg_pg, pHalData->bb_phy_reg_pg_len); rtStatus = _SUCCESS; } else { DBG_871X("%s(): Critical Error !!!\n",__FUNCTION__); } } if(rtStatus == _SUCCESS) { //DBG_871X("phy_ConfigBBWithPgParaFile(): read %s ok\n", pFileName); phy_ParseBBPgParaFile(Adapter, pHalData->para_file_buf); } else { DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName); } return rtStatus; } #if (MP_DRIVER == 1 ) int phy_ConfigBBWithMpParaFile( IN PADAPTER Adapter, IN char* pFileName ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; char *szLine, *ptmp; u32 u4bRegOffset, u4bRegValue, u4bMove; if(!(Adapter->registrypriv.load_phy_file & LOAD_BB_MP_PARA_FILE)) return rtStatus; _rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if ((pHalData->bb_phy_reg_mp_len == 0) && (pHalData->bb_phy_reg_mp == NULL)) { rtw_merge_string(file__path, PATH_LENGTH_MAX, rtw_phy_file_path, pFileName); if (rtw_is_file_readable(file__path) == _TRUE) { rlen = rtw_retrieve_from_file(file__path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pHalData->bb_phy_reg_mp = rtw_zvmalloc(rlen); if(pHalData->bb_phy_reg_mp) { _rtw_memcpy(pHalData->bb_phy_reg_mp, pHalData->para_file_buf, rlen); pHalData->bb_phy_reg_mp_len = rlen; } else { DBG_871X("%s bb_phy_reg_mp alloc fail !\n",__FUNCTION__); } } } } else { if ((pHalData->bb_phy_reg_mp_len != 0) && (pHalData->bb_phy_reg_mp != NULL)) { _rtw_memcpy(pHalData->para_file_buf, pHalData->bb_phy_reg_mp, pHalData->bb_phy_reg_mp_len); rtStatus = _SUCCESS; } else { DBG_871X("%s(): Critical Error !!!\n",__FUNCTION__); } } if(rtStatus == _SUCCESS) { //DBG_871X("phy_ConfigBBWithMpParaFile(): read %s ok\n", pFileName); ptmp = pHalData->para_file_buf; for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) { if(!IsCommentString(szLine)) { // Get 1st hex value as register offset. if(GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) { if(u4bRegOffset == 0xffff) { // Ending. break; } else if (u4bRegOffset == 0xfe || u4bRegOffset == 0xffe) { #ifdef CONFIG_LONG_DELAY_ISSUE rtw_msleep_os(50); #else rtw_mdelay_os(50); #endif } else if (u4bRegOffset == 0xfd) { rtw_mdelay_os(5); } else if (u4bRegOffset == 0xfc) { rtw_mdelay_os(1); } else if (u4bRegOffset == 0xfb) { rtw_udelay_os(50); } else if (u4bRegOffset == 0xfa) { rtw_udelay_os(5); } else if (u4bRegOffset == 0xf9) { rtw_udelay_os(1); } // Get 2nd hex value as register value. szLine += u4bMove; if(GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) { //DBG_871X("[ADDR]%03lX=%08lX\n", u4bRegOffset, u4bRegValue); PHY_SetBBReg(Adapter, u4bRegOffset, bMaskDWord, u4bRegValue); // Add 1us delay between BB/RF register setting. rtw_udelay_os(1); } } } } } else { DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName); } return rtStatus; } #endif int PHY_ConfigRFWithParaFile( IN PADAPTER Adapter, IN char* pFileName, IN u8 eRFPath ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; char *szLine, *ptmp; u32 u4bRegOffset, u4bRegValue, u4bMove; u16 i; char *pBuf = NULL; u32 *pBufLen = NULL; if(!(Adapter->registrypriv.load_phy_file & LOAD_RF_PARA_FILE)) return rtStatus; switch(eRFPath) { case ODM_RF_PATH_A: pBuf = pHalData->rf_radio_a; pBufLen = &pHalData->rf_radio_a_len; break; case ODM_RF_PATH_B: pBuf = pHalData->rf_radio_b; pBufLen = &pHalData->rf_radio_b_len; break; default: DBG_871X("Unknown RF path!! %d\r\n", eRFPath); break; } _rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if ((pBufLen != NULL) && (*pBufLen == 0) && (pBuf == NULL)) { rtw_merge_string(file__path, PATH_LENGTH_MAX, rtw_phy_file_path, pFileName); if (rtw_is_file_readable(file__path) == _TRUE) { rlen = rtw_retrieve_from_file(file__path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pBuf = rtw_zvmalloc(rlen); if(pBuf) { _rtw_memcpy(pBuf, pHalData->para_file_buf, rlen); *pBufLen = rlen; switch(eRFPath) { case ODM_RF_PATH_A: pHalData->rf_radio_a = pBuf; break; case ODM_RF_PATH_B: pHalData->rf_radio_b = pBuf; break; } } else { DBG_871X("%s(): eRFPath=%d alloc fail !\n",__FUNCTION__,eRFPath); } } } } else { if ((pBufLen != NULL) && (*pBufLen == 0) && (pBuf == NULL)) { _rtw_memcpy(pHalData->para_file_buf, pBuf, *pBufLen); rtStatus = _SUCCESS; } else { DBG_871X("%s(): Critical Error !!!\n",__FUNCTION__); } } if(rtStatus == _SUCCESS) { //DBG_871X("%s(): read %s successfully\n", __FUNCTION__, pFileName); ptmp = pHalData->para_file_buf; for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) { if(!IsCommentString(szLine)) { // Get 1st hex value as register offset. if(GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) { if(u4bRegOffset == 0xfe || u4bRegOffset == 0xffe) { // Deay specific ms. Only RF configuration require delay. #ifdef CONFIG_LONG_DELAY_ISSUE rtw_msleep_os(50); #else rtw_mdelay_os(50); #endif } else if (u4bRegOffset == 0xfd) { //delay_ms(5); for(i=0;i<100;i++) rtw_udelay_os(MAX_STALL_TIME); } else if (u4bRegOffset == 0xfc) { //delay_ms(1); for(i=0;i<20;i++) rtw_udelay_os(MAX_STALL_TIME); } else if (u4bRegOffset == 0xfb) { rtw_udelay_os(50); } else if (u4bRegOffset == 0xfa) { rtw_udelay_os(5); } else if (u4bRegOffset == 0xf9) { rtw_udelay_os(1); } else if(u4bRegOffset == 0xffff) { break; } // Get 2nd hex value as register value. szLine += u4bMove; if(GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) { PHY_SetRFReg(Adapter, eRFPath, u4bRegOffset, bRFRegOffsetMask, u4bRegValue); // Temp add, for frequency lock, if no delay, that may cause // frequency shift, ex: 2412MHz => 2417MHz // If frequency shift, the following action may works. // Fractional-N table in radio_a.txt //0x2a 0x00001 // channel 1 //0x2b 0x00808 frequency divider. //0x2b 0x53333 //0x2c 0x0000c rtw_udelay_os(1); } } } } } else { DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName); } return rtStatus; } VOID initDeltaSwingIndexTables( PADAPTER Adapter, char* Band, char* Path, char* Sign, char* Channel, char* Rate, char* Data ) { #define STR_EQUAL_5G(_band, _path, _sign, _rate, _chnl) \ ((strcmp(Band, _band) == 0) && (strcmp(Path, _path) == 0) && (strcmp(Sign, _sign) == 0) &&\ (strcmp(Rate, _rate) == 0) && (strcmp(Channel, _chnl) == 0)\ ) #define STR_EQUAL_2G(_band, _path, _sign, _rate) \ ((strcmp(Band, _band) == 0) && (strcmp(Path, _path) == 0) && (strcmp(Sign, _sign) == 0) &&\ (strcmp(Rate, _rate) == 0)\ ) #define STORE_SWING_TABLE(_array, _iteratedIdx) \ for(token = strsep(&Data, delim); token != NULL; token = strsep(&Data, delim))\ {\ sscanf(token, "%d", &idx);\ _array[_iteratedIdx++] = (u8)idx;\ }\ HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); PDM_ODM_T pDM_Odm = &pHalData->odmpriv; PODM_RF_CAL_T pRFCalibrateInfo = &(pDM_Odm->RFCalibrateInfo); u32 j = 0; char *token; char delim[] = ","; u32 idx = 0; //DBG_871X("===>initDeltaSwingIndexTables(): Band: %s;\nPath: %s;\nSign: %s;\nChannel: %s;\nRate: %s;\n, Data: %s;\n", // Band, Path, Sign, Channel, Rate, Data); if ( STR_EQUAL_2G("2G", "A", "+", "CCK") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKA_P, j); } else if ( STR_EQUAL_2G("2G", "A", "-", "CCK") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKA_N, j); } else if ( STR_EQUAL_2G("2G", "B", "+", "CCK") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKB_P, j); } else if ( STR_EQUAL_2G("2G", "B", "-", "CCK") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKB_N, j); } else if ( STR_EQUAL_2G("2G", "A", "+", "ALL") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GA_P, j); } else if ( STR_EQUAL_2G("2G", "A", "-", "ALL") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GA_N, j); } else if ( STR_EQUAL_2G("2G", "B", "+", "ALL") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GB_P, j); } else if ( STR_EQUAL_2G("2G", "B", "-", "ALL") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GB_N, j); } else if ( STR_EQUAL_5G("5G", "A", "+", "ALL", "0") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[0], j); } else if ( STR_EQUAL_5G("5G", "A", "-", "ALL", "0") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[0], j); } else if ( STR_EQUAL_5G("5G", "B", "+", "ALL", "0") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[0], j); } else if ( STR_EQUAL_5G("5G", "B", "-", "ALL", "0") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[0], j); } else if ( STR_EQUAL_5G("5G", "A", "+", "ALL", "1") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[1], j); } else if ( STR_EQUAL_5G("5G", "A", "-", "ALL", "1") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[1], j); } else if ( STR_EQUAL_5G("5G", "B", "+", "ALL", "1") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[1], j); } else if ( STR_EQUAL_5G("5G", "B", "-", "ALL", "1") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[1], j); } else if ( STR_EQUAL_5G("5G", "A", "+", "ALL", "2") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[2], j); } else if ( STR_EQUAL_5G("5G", "A", "-", "ALL", "2") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[2], j); } else if ( STR_EQUAL_5G("5G", "B", "+", "ALL", "2") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[2], j); } else if ( STR_EQUAL_5G("5G", "B", "-", "ALL", "2") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[2], j); } else if ( STR_EQUAL_5G("5G", "A", "+", "ALL", "3") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[3], j); } else if ( STR_EQUAL_5G("5G", "A", "-", "ALL", "3") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[3], j); } else if ( STR_EQUAL_5G("5G", "B", "+", "ALL", "3") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[3], j); } else if ( STR_EQUAL_5G("5G", "B", "-", "ALL", "3") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[3], j); } else { DBG_871X("===>initDeltaSwingIndexTables(): The input is invalid!!\n"); } } int PHY_ConfigRFWithTxPwrTrackParaFile( IN PADAPTER Adapter, IN char* pFileName ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); PDM_ODM_T pDM_Odm = &pHalData->odmpriv; PODM_RF_CAL_T pRFCalibrateInfo = &(pDM_Odm->RFCalibrateInfo); int rlen = 0, rtStatus = _FAIL; char *szLine, *ptmp; u32 i = 0, j = 0; char c = 0; if(!(Adapter->registrypriv.load_phy_file & LOAD_RF_TXPWR_TRACK_PARA_FILE)) return rtStatus; _rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if ((pHalData->rf_tx_pwr_track_len == 0) && (pHalData->rf_tx_pwr_track == NULL)) { rtw_merge_string(file__path, PATH_LENGTH_MAX, rtw_phy_file_path, pFileName); if (rtw_is_file_readable(file__path) == _TRUE) { rlen = rtw_retrieve_from_file(file__path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pHalData->rf_tx_pwr_track = rtw_zvmalloc(rlen); if(pHalData->rf_tx_pwr_track) { _rtw_memcpy(pHalData->rf_tx_pwr_track, pHalData->para_file_buf, rlen); pHalData->rf_tx_pwr_track_len = rlen; } else { DBG_871X("%s rf_tx_pwr_track alloc fail !\n",__FUNCTION__); } } } } else { if ((pHalData->rf_tx_pwr_track_len != 0) && (pHalData->rf_tx_pwr_track != NULL)) { _rtw_memcpy(pHalData->para_file_buf, pHalData->rf_tx_pwr_track, pHalData->rf_tx_pwr_track_len); rtStatus = _SUCCESS; } else { DBG_871X("%s(): Critical Error !!!\n",__FUNCTION__); } } if(rtStatus == _SUCCESS) { //DBG_871X("%s(): read %s successfully\n", __FUNCTION__, pFileName); ptmp = pHalData->para_file_buf; for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) { if ( ! IsCommentString(szLine) ) { char band[5]="", path[5]="", sign[5] = ""; char chnl[5]="", rate[10]=""; char data[300]=""; // 100 is too small if (strlen(szLine) < 10 || szLine[0] != '[') continue; strncpy(band, szLine+1, 2); strncpy(path, szLine+5, 1); strncpy(sign, szLine+8, 1); i = 10; // szLine+10 if ( ! ParseQualifiedString(szLine, &i, rate, '[', ']') ) { //DBG_871X("Fail to parse rate!\n"); } if ( ! ParseQualifiedString(szLine, &i, chnl, '[', ']') ) { //DBG_871X("Fail to parse channel group!\n"); } while ( szLine[i] != '{' && i < strlen(szLine)) i++; if ( ! ParseQualifiedString(szLine, &i, data, '{', '}') ) { //DBG_871X("Fail to parse data!\n"); } initDeltaSwingIndexTables(Adapter, band, path, sign, chnl, rate, data); } } } else { DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName); } #if 0 for (i = 0; i < DELTA_SWINGIDX_SIZE; ++i) { DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GA_P[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GA_P[i]); DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GA_N[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GA_N[i]); DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GB_P[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GB_P[i]); DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GB_N[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GB_N[i]); DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKA_P[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKA_P[i]); DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKA_N[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKA_N[i]); DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKB_P[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKB_P[i]); DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKB_N[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKB_N[i]); for (j = 0; j < 3; ++j) { DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[%d][%d] = %d\n", j, i, pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[j][i]); DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[%d][%d] = %d\n", j, i, pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[j][i]); DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[%d][%d] = %d\n", j, i, pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[j][i]); DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[%d][%d] = %d\n", j, i, pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[j][i]); } } #endif return rtStatus; } int phy_ParsePowerLimitTableFile( PADAPTER Adapter, char* buffer ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); PDM_ODM_T pDM_Odm = &(pHalData->odmpriv); u32 i = 0, forCnt = 0; u8 loadingStage = 0, limitValue = 0, fraction = 0; char *szLine, *ptmp; int rtStatus = _SUCCESS; char band[10], bandwidth[10], rateSection[10], regulation[TXPWR_LMT_MAX_REGULATION_NUM][10], rfPath[10],colNumBuf[10]; u8 colNum = 0; DBG_871X("===>phy_ParsePowerLimitTableFile()\n" ); if ( Adapter->registrypriv.RegDecryptCustomFile == 1 ) phy_DecryptBBPgParaFile( Adapter, buffer); ptmp = buffer; for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) { if (isAllSpaceOrTab(szLine, sizeof(*szLine))) continue; // skip comment if ( IsCommentString( szLine ) ) { continue; } if( loadingStage == 0 ) { for ( forCnt = 0; forCnt < TXPWR_LMT_MAX_REGULATION_NUM; ++forCnt ) _rtw_memset( ( PVOID ) regulation[forCnt], 0, 10 ); _rtw_memset( ( PVOID ) band, 0, 10 ); _rtw_memset( ( PVOID ) bandwidth, 0, 10 ); _rtw_memset( ( PVOID ) rateSection, 0, 10 ); _rtw_memset( ( PVOID ) rfPath, 0, 10 ); _rtw_memset( ( PVOID ) colNumBuf, 0, 10 ); if ( szLine[0] != '#' || szLine[1] != '#' ) continue; // skip the space i = 2; while ( szLine[i] == ' ' || szLine[i] == '\t' ) ++i; szLine[--i] = ' '; // return the space in front of the regulation info // Parse the label of the table if ( ! ParseQualifiedString( szLine, &i, band, ' ', ',' ) ) { DBG_871X( "Fail to parse band!\n"); return _FAIL; } if ( ! ParseQualifiedString( szLine, &i, bandwidth, ' ', ',' ) ) { DBG_871X("Fail to parse bandwidth!\n"); return _FAIL; } if ( ! ParseQualifiedString( szLine, &i, rfPath, ' ', ',' ) ) { DBG_871X("Fail to parse rf path!\n"); return _FAIL; } if ( ! ParseQualifiedString( szLine, &i, rateSection, ' ', ',' ) ) { DBG_871X("Fail to parse rate!\n"); return _FAIL; } loadingStage = 1; } else if ( loadingStage == 1 ) { if ( szLine[0] != '#' || szLine[1] != '#' ) continue; // skip the space i = 2; while ( szLine[i] == ' ' || szLine[i] == '\t' ) ++i; if ( !eqNByte( (u8 *)(szLine + i), (u8 *)("START"), 5 ) ) { DBG_871X("Lost \"## START\" label\n"); return _FAIL; } loadingStage = 2; } else if ( loadingStage == 2 ) { if ( szLine[0] != '#' || szLine[1] != '#' ) continue; // skip the space i = 2; while ( szLine[i] == ' ' || szLine[i] == '\t' ) ++i; if ( ! ParseQualifiedString( szLine, &i, colNumBuf, '#', '#' ) ) { DBG_871X("Fail to parse column number!\n"); return _FAIL; } if ( !GetU1ByteIntegerFromStringInDecimal( colNumBuf, &colNum ) ) return _FAIL; if ( colNum > TXPWR_LMT_MAX_REGULATION_NUM ) { DBG_871X("unvalid col number %d (greater than max %d)\n", colNum, TXPWR_LMT_MAX_REGULATION_NUM ); return _FAIL; } for ( forCnt = 0; forCnt < colNum; ++forCnt ) { u8 regulation_name_cnt = 0; // skip the space while ( szLine[i] == ' ' || szLine[i] == '\t' ) ++i; while ( szLine[i] != ' ' && szLine[i] != '\t' && szLine[i] != '\0' ) regulation[forCnt][regulation_name_cnt++] = szLine[i++]; //DBG_871X("regulation %s!\n", regulation[forCnt]); if ( regulation_name_cnt == 0 ) { DBG_871X("unvalid number of regulation!\n"); return _FAIL; } } loadingStage = 3; } else if ( loadingStage == 3 ) { char channel[10] = {0}, powerLimit[10] = {0}; u8 cnt = 0; // the table ends if ( szLine[0] == '#' && szLine[1] == '#' ) { i = 2; while ( szLine[i] == ' ' || szLine[i] == '\t' ) ++i; if ( eqNByte( (u8 *)(szLine + i), (u8 *)("END"), 3 ) ) { loadingStage = 0; continue; } else { DBG_871X("Wrong format\n"); DBG_871X("<===== phy_ParsePowerLimitTableFile()\n"); return _FAIL; } } if ( ( szLine[0] != 'c' && szLine[0] != 'C' ) || ( szLine[1] != 'h' && szLine[1] != 'H' ) ) { DBG_871X("Meet wrong channel => power limt pair '%c','%c'(%d,%d)\n", szLine[0], szLine[1], szLine[0], szLine[1]); continue; } i = 2;// move to the location behind 'h' // load the channel number cnt = 0; while ( szLine[i] >= '0' && szLine[i] <= '9' ) { channel[cnt] = szLine[i]; ++cnt; ++i; } //DBG_871X("chnl %s!\n", channel); for ( forCnt = 0; forCnt < colNum; ++forCnt ) { // skip the space between channel number and the power limit value while ( szLine[i] == ' ' || szLine[i] == '\t' ) ++i; // load the power limit value cnt = 0; fraction = 0; _rtw_memset( ( PVOID ) powerLimit, 0, 10 ); while ( ( szLine[i] >= '0' && szLine[i] <= '9' ) || szLine[i] == '.' ) { if ( szLine[i] == '.' ){ if ( ( szLine[i+1] >= '0' && szLine[i+1] <= '9' ) ) { fraction = szLine[i+1]; i += 2; } else { DBG_871X("Wrong fraction in TXPWR_LMT.txt\n"); return _FAIL; } break; } powerLimit[cnt] = szLine[i]; ++cnt; ++i; } if ( powerLimit[0] == '\0' ) { powerLimit[0] = '6'; powerLimit[1] = '3'; i += 2; } else { if ( !GetU1ByteIntegerFromStringInDecimal( powerLimit, &limitValue ) ) return _FAIL; limitValue *= 2; cnt = 0; if ( fraction == '5' ) ++limitValue; // the value is greater or equal to 100 if ( limitValue >= 100 ) { powerLimit[cnt++] = limitValue/100 + '0'; limitValue %= 100; if ( limitValue >= 10 ) { powerLimit[cnt++] = limitValue/10 + '0'; limitValue %= 10; } else { powerLimit[cnt++] = '0'; } powerLimit[cnt++] = limitValue + '0'; } // the value is greater or equal to 10 else if ( limitValue >= 10 ) { powerLimit[cnt++] = limitValue/10 + '0'; limitValue %= 10; powerLimit[cnt++] = limitValue + '0'; } // the value is less than 10 else powerLimit[cnt++] = limitValue + '0'; powerLimit[cnt] = '\0'; } //DBG_871X("ch%s => %s\n", channel, powerLimit); // store the power limit value PHY_SetTxPowerLimit(pDM_Odm, (u8 *)regulation[forCnt], (u8 *)band, (u8 *)bandwidth, (u8 *)rateSection, (u8 *)rfPath, (u8 *)channel, (u8 *)powerLimit ); } } else { DBG_871X("Abnormal loading stage in phy_ParsePowerLimitTableFile()!\n"); rtStatus = _FAIL; break; } } DBG_871X("<===phy_ParsePowerLimitTableFile()\n"); return rtStatus; } int PHY_ConfigRFWithPowerLimitTableParaFile( IN PADAPTER Adapter, IN const char *pFileName ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; if(!(Adapter->registrypriv.load_phy_file & LOAD_RF_TXPWR_LMT_PARA_FILE)) return rtStatus; _rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if (pHalData->rf_tx_pwr_lmt == NULL) { rtw_merge_string(file__path, PATH_LENGTH_MAX, rtw_phy_file_path, pFileName); if (rtw_is_file_readable(file__path) == _TRUE) { rlen = rtw_retrieve_from_file(file__path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pHalData->rf_tx_pwr_lmt = rtw_zvmalloc(rlen); if(pHalData->rf_tx_pwr_lmt) { _rtw_memcpy(pHalData->rf_tx_pwr_lmt, pHalData->para_file_buf, rlen); pHalData->rf_tx_pwr_lmt_len = rlen; } else { DBG_871X("%s rf_tx_pwr_lmt alloc fail !\n",__FUNCTION__); } } } } else { if ((pHalData->rf_tx_pwr_lmt_len != 0) && (pHalData->rf_tx_pwr_lmt != NULL)) { _rtw_memcpy(pHalData->para_file_buf, pHalData->rf_tx_pwr_lmt, pHalData->rf_tx_pwr_lmt_len); rtStatus = _SUCCESS; } else { DBG_871X("%s(): Critical Error !!!\n",__FUNCTION__); } } if(rtStatus == _SUCCESS) { //DBG_871X("%s(): read %s ok\n", __FUNCTION__, pFileName); rtStatus = phy_ParsePowerLimitTableFile( Adapter, pHalData->para_file_buf ); } else { DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName); } return rtStatus; } void phy_free_filebuf_mask(_adapter *padapter, u8 mask) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); if (pHalData->mac_reg && (mask & LOAD_MAC_PARA_FILE)) { rtw_vmfree(pHalData->mac_reg, pHalData->mac_reg_len); pHalData->mac_reg = NULL; } if (mask & LOAD_BB_PARA_FILE) { if (pHalData->bb_phy_reg) { rtw_vmfree(pHalData->bb_phy_reg, pHalData->bb_phy_reg_len); pHalData->bb_phy_reg = NULL; } if (pHalData->bb_agc_tab) { rtw_vmfree(pHalData->bb_agc_tab, pHalData->bb_agc_tab_len); pHalData->bb_agc_tab = NULL; } } if (pHalData->bb_phy_reg_pg && (mask & LOAD_BB_PG_PARA_FILE)) { rtw_vmfree(pHalData->bb_phy_reg_pg, pHalData->bb_phy_reg_pg_len); pHalData->bb_phy_reg_pg = NULL; } if (pHalData->bb_phy_reg_mp && (mask & LOAD_BB_MP_PARA_FILE)) { rtw_vmfree(pHalData->bb_phy_reg_mp, pHalData->bb_phy_reg_mp_len); pHalData->bb_phy_reg_mp = NULL; } if (mask & LOAD_RF_PARA_FILE) { if (pHalData->rf_radio_a) { rtw_vmfree(pHalData->rf_radio_a, pHalData->rf_radio_a_len); pHalData->rf_radio_a = NULL; } if (pHalData->rf_radio_b) { rtw_vmfree(pHalData->rf_radio_b, pHalData->rf_radio_b_len); pHalData->rf_radio_b = NULL; } } if (pHalData->rf_tx_pwr_track && (mask & LOAD_RF_TXPWR_TRACK_PARA_FILE)) { rtw_vmfree(pHalData->rf_tx_pwr_track, pHalData->rf_tx_pwr_track_len); pHalData->rf_tx_pwr_track = NULL; } if (pHalData->rf_tx_pwr_lmt && (mask & LOAD_RF_TXPWR_LMT_PARA_FILE)) { rtw_vmfree(pHalData->rf_tx_pwr_lmt, pHalData->rf_tx_pwr_lmt_len); pHalData->rf_tx_pwr_lmt = NULL; } } inline void phy_free_filebuf(_adapter *padapter) { phy_free_filebuf_mask(padapter, 0xFF); } #endif