/****************************************************************************** * * Copyright(c) 2007 - 2012 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #define _RTW_WLAN_UTIL_C_ #include #if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN) #include #endif unsigned char ARTHEROS_OUI1[] = {0x00, 0x03, 0x7f}; unsigned char ARTHEROS_OUI2[] = {0x00, 0x13, 0x74}; unsigned char BROADCOM_OUI1[] = {0x00, 0x10, 0x18}; unsigned char BROADCOM_OUI2[] = {0x00, 0x0a, 0xf7}; unsigned char BROADCOM_OUI3[] = {0x00, 0x05, 0xb5}; unsigned char CISCO_OUI[] = {0x00, 0x40, 0x96}; unsigned char MARVELL_OUI[] = {0x00, 0x50, 0x43}; unsigned char RALINK_OUI[] = {0x00, 0x0c, 0x43}; unsigned char REALTEK_OUI[] = {0x00, 0xe0, 0x4c}; unsigned char AIRGOCAP_OUI[] = {0x00, 0x0a, 0xf5}; unsigned char REALTEK_96B_IE[] = {0x00, 0xe0, 0x4c, 0x02, 0x01, 0x20}; extern unsigned char RTW_WPA_OUI[]; extern unsigned char WPA_TKIP_CIPHER[4]; extern unsigned char RSN_TKIP_CIPHER[4]; #define R2T_PHY_DELAY (0) //#define WAIT_FOR_BCN_TO_MIN (3000) #define WAIT_FOR_BCN_TO_MIN (6000) #define WAIT_FOR_BCN_TO_MAX (20000) #define DISCONNECT_BY_CHK_BCN_FAIL_OBSERV_PERIOD_IN_MS 1000 #define DISCONNECT_BY_CHK_BCN_FAIL_THRESHOLD 3 static u8 rtw_basic_rate_cck[4] = { IEEE80211_CCK_RATE_1MB|IEEE80211_BASIC_RATE_MASK, IEEE80211_CCK_RATE_2MB|IEEE80211_BASIC_RATE_MASK, IEEE80211_CCK_RATE_5MB|IEEE80211_BASIC_RATE_MASK, IEEE80211_CCK_RATE_11MB|IEEE80211_BASIC_RATE_MASK }; static u8 rtw_basic_rate_ofdm[3] = { IEEE80211_OFDM_RATE_6MB|IEEE80211_BASIC_RATE_MASK, IEEE80211_OFDM_RATE_12MB|IEEE80211_BASIC_RATE_MASK, IEEE80211_OFDM_RATE_24MB|IEEE80211_BASIC_RATE_MASK }; static u8 rtw_basic_rate_mix[7] = { IEEE80211_CCK_RATE_1MB|IEEE80211_BASIC_RATE_MASK, IEEE80211_CCK_RATE_2MB|IEEE80211_BASIC_RATE_MASK, IEEE80211_CCK_RATE_5MB|IEEE80211_BASIC_RATE_MASK, IEEE80211_CCK_RATE_11MB|IEEE80211_BASIC_RATE_MASK, IEEE80211_OFDM_RATE_6MB|IEEE80211_BASIC_RATE_MASK, IEEE80211_OFDM_RATE_12MB|IEEE80211_BASIC_RATE_MASK, IEEE80211_OFDM_RATE_24MB|IEEE80211_BASIC_RATE_MASK }; int new_bcn_max = 3; int cckrates_included(unsigned char *rate, int ratelen) { int i; for(i = 0; i < ratelen; i++) { if ( (((rate[i]) & 0x7f) == 2) || (((rate[i]) & 0x7f) == 4) || (((rate[i]) & 0x7f) == 11) || (((rate[i]) & 0x7f) == 22) ) return _TRUE; } return _FALSE; } int cckratesonly_included(unsigned char *rate, int ratelen) { int i; for(i = 0; i < ratelen; i++) { if ( (((rate[i]) & 0x7f) != 2) && (((rate[i]) & 0x7f) != 4) && (((rate[i]) & 0x7f) != 11) && (((rate[i]) & 0x7f) != 22) ) return _FALSE; } return _TRUE; } s8 rtw_get_tx_nss(_adapter *adapter, struct sta_info *psta) { u8 rf_type = RF_1T1R, custom_rf_type, vht_mcs[2]; s8 nss = 1; custom_rf_type = adapter->registrypriv.rf_config; rtw_hal_get_hwreg(adapter, HW_VAR_RF_TYPE, (u8 *)(&rf_type)); if (!psta) return nss; /* rf_config is dependent on efuse or sw config */ if (custom_rf_type != RF_MAX_TYPE) rf_type = custom_rf_type; #ifdef CONFIG_80211AC_VHT if (psta->vhtpriv.vht_option) { u8 vht_mcs[2]; struct mlme_priv *pmlmepriv = &(adapter->mlmepriv); struct vht_priv *pvhtpriv_ap = &pmlmepriv->vhtpriv; _rtw_memcpy(vht_mcs, psta->vhtpriv.vht_mcs_map, 2); /* doesn't support 5~8 SS so far */ vht_mcs[1] = 0xff; switch (rf_type) { case RF_1T1R: case RF_1T2R: vht_mcs[0] |= 0xfc; break; case RF_2T2R: case RF_2T4R: case RF_2T2R_GREEN: case RF_2T3R: vht_mcs[0] |= 0xf0; break; case RF_3T3R: case RF_3T4R: vht_mcs[0] |= 0xc0; break; default: DBG_871X("%s,%d, unknown rf type\n", __func__, __LINE__); break; } nss = rtw_vht_mcsmap_to_nss(vht_mcs); } else #endif /* CONFIG_80211AC_VHT */ if (psta->htpriv.ht_option) { u8 supp_mcs_set[4]; _rtw_memcpy(supp_mcs_set, psta->htpriv.ht_cap.supp_mcs_set, 4); switch (rf_type) { case RF_1T1R: case RF_1T2R: supp_mcs_set[1] = supp_mcs_set[2] = supp_mcs_set[3] = 0; break; case RF_2T2R: case RF_2T4R: case RF_2T2R_GREEN: case RF_2T3R: supp_mcs_set[2] = supp_mcs_set[3] = 0; break; case RF_3T3R: case RF_3T4R: supp_mcs_set[3] = 0; break; default: DBG_871X("%s,%d, unknown rf type\n", __func__, __LINE__); break; } nss = rtw_ht_mcsset_to_nss(supp_mcs_set); } DBG_871X("%s: %d SS, rf_type=%d\n", __func__, nss, rf_type); return nss; } u8 networktype_to_raid(_adapter *adapter,struct sta_info *psta) { unsigned char raid; switch(psta->wireless_mode) { case WIRELESS_11B: raid = RATR_INX_WIRELESS_B; break; case WIRELESS_11A: case WIRELESS_11G: raid = RATR_INX_WIRELESS_G; break; case WIRELESS_11BG: raid = RATR_INX_WIRELESS_GB; break; case WIRELESS_11_24N: case WIRELESS_11_5N: raid = RATR_INX_WIRELESS_N; break; case WIRELESS_11A_5N: case WIRELESS_11G_24N: raid = RATR_INX_WIRELESS_NG; break; case WIRELESS_11BG_24N: raid = RATR_INX_WIRELESS_NGB; break; default: raid = RATR_INX_WIRELESS_GB; break; } return raid; } u8 networktype_to_raid_ex(_adapter *adapter, struct sta_info *psta) { struct mlme_ext_priv *pmlmeext = &adapter->mlmeextpriv; u8 raid = RATEID_IDX_BGN_40M_1SS, cur_rf_type, rf_type, custom_rf_type; s8 tx_nss; tx_nss = rtw_get_tx_nss(adapter, psta); switch(psta->wireless_mode) { case WIRELESS_11B: raid = RATEID_IDX_B; break; case WIRELESS_11A: case WIRELESS_11G: raid = RATEID_IDX_G; break; case WIRELESS_11BG: raid = RATEID_IDX_BG; break; case WIRELESS_11_24N: case WIRELESS_11_5N: case WIRELESS_11A_5N: case WIRELESS_11G_24N: if (tx_nss == 1) raid = RATEID_IDX_GN_N1SS; else if (tx_nss == 2) raid = RATEID_IDX_GN_N2SS; else if (tx_nss == 3) raid = RATEID_IDX_BGN_3SS; else DBG_871X("tx_nss error!(tx_nss=%d)\n", tx_nss); break; case WIRELESS_11B_24N: case WIRELESS_11BG_24N: if (psta->bw_mode == CHANNEL_WIDTH_20) { if (tx_nss == 1) raid = RATEID_IDX_BGN_20M_1SS_BN; else if (tx_nss == 2) raid = RATEID_IDX_BGN_20M_2SS_BN; else if (tx_nss == 3) raid = RATEID_IDX_BGN_3SS; else DBG_871X("tx_nss error!(tx_nss=%d)\n", tx_nss); } else { if (tx_nss == 1) raid = RATEID_IDX_BGN_40M_1SS; else if (tx_nss == 2) raid = RATEID_IDX_BGN_40M_2SS; else if (tx_nss == 3) raid = RATEID_IDX_BGN_3SS; else DBG_871X("tx_nss error!(tx_nss=%d)\n", tx_nss); } break; #ifdef CONFIG_80211AC_VHT case WIRELESS_11_5AC: if (tx_nss == 1) raid = RATEID_IDX_VHT_1SS; else if (tx_nss == 2) raid = RATEID_IDX_VHT_2SS; else if (tx_nss == 3) raid = RATEID_IDX_VHT_3SS; else DBG_871X("tx_nss error!(tx_nss=%d)\n", tx_nss); break; case WIRELESS_11_24AC: if (psta->bw_mode >= CHANNEL_WIDTH_80) { if (tx_nss == 1) raid = RATEID_IDX_VHT_1SS; else if (tx_nss == 2) raid = RATEID_IDX_VHT_2SS; else if (tx_nss == 3) raid = RATEID_IDX_VHT_3SS; else DBG_871X("tx_nss error!(tx_nss=%d)\n", tx_nss); } else { if (tx_nss == 1) raid = RATEID_IDX_MIX1; else if (tx_nss == 2) raid = RATEID_IDX_MIX2; else if (tx_nss == 3) raid = RATEID_IDX_VHT_3SS; else DBG_871X("tx_nss error!(tx_nss=%d)\n", tx_nss); } break; #endif default: DBG_871X("unexpected wireless mode!(psta->wireless_mode=%x)\n", psta->wireless_mode); break; } /* DBG_871X("psta->wireless_mode=%x, tx_nss=%d\n", psta->wireless_mode, tx_nss); */ return raid; } u8 judge_network_type(_adapter *padapter, unsigned char *rate, int ratelen) { u8 network_type = 0; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); if(pmlmeext->cur_channel > 14) { if (pmlmeinfo->VHT_enable) network_type = WIRELESS_11AC; else if (pmlmeinfo->HT_enable) network_type = WIRELESS_11_5N; network_type |= WIRELESS_11A; } else { if (pmlmeinfo->HT_enable) { network_type = WIRELESS_11_24N; } if ((cckratesonly_included(rate, ratelen)) == _TRUE) { network_type |= WIRELESS_11B; } else if((cckrates_included(rate, ratelen)) == _TRUE) { network_type |= WIRELESS_11BG; } else { network_type |= WIRELESS_11G; } } return network_type; } unsigned char ratetbl_val_2wifirate(unsigned char rate); unsigned char ratetbl_val_2wifirate(unsigned char rate) { unsigned char val = 0; switch (rate & 0x7f) { case 0: val = IEEE80211_CCK_RATE_1MB; break; case 1: val = IEEE80211_CCK_RATE_2MB; break; case 2: val = IEEE80211_CCK_RATE_5MB; break; case 3: val = IEEE80211_CCK_RATE_11MB; break; case 4: val = IEEE80211_OFDM_RATE_6MB; break; case 5: val = IEEE80211_OFDM_RATE_9MB; break; case 6: val = IEEE80211_OFDM_RATE_12MB; break; case 7: val = IEEE80211_OFDM_RATE_18MB; break; case 8: val = IEEE80211_OFDM_RATE_24MB; break; case 9: val = IEEE80211_OFDM_RATE_36MB; break; case 10: val = IEEE80211_OFDM_RATE_48MB; break; case 11: val = IEEE80211_OFDM_RATE_54MB; break; } return val; } int is_basicrate(_adapter *padapter, unsigned char rate); int is_basicrate(_adapter *padapter, unsigned char rate) { int i; unsigned char val; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; for(i = 0; i < NumRates; i++) { val = pmlmeext->basicrate[i]; if ((val != 0xff) && (val != 0xfe)) { if (rate == ratetbl_val_2wifirate(val)) { return _TRUE; } } } return _FALSE; } unsigned int ratetbl2rateset(_adapter *padapter, unsigned char *rateset); unsigned int ratetbl2rateset(_adapter *padapter, unsigned char *rateset) { int i; unsigned char rate; unsigned int len = 0; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; for (i = 0; i < NumRates; i++) { rate = pmlmeext->datarate[i]; switch (rate) { case 0xff: return len; case 0xfe: continue; default: rate = ratetbl_val_2wifirate(rate); if (is_basicrate(padapter, rate) == _TRUE) { rate |= IEEE80211_BASIC_RATE_MASK; } rateset[len] = rate; len++; break; } } return len; } void get_rate_set(_adapter *padapter, unsigned char *pbssrate, int *bssrate_len) { unsigned char supportedrates[NumRates]; _rtw_memset(supportedrates, 0, NumRates); *bssrate_len = ratetbl2rateset(padapter, supportedrates); _rtw_memcpy(pbssrate, supportedrates, *bssrate_len); } void set_mcs_rate_by_mask(u8 *mcs_set, u32 mask) { u8 mcs_rate_1r = (u8)(mask&0xff); u8 mcs_rate_2r = (u8)((mask>>8)&0xff); u8 mcs_rate_3r = (u8)((mask>>16)&0xff); u8 mcs_rate_4r = (u8)((mask>>24)&0xff); mcs_set[0] &= mcs_rate_1r; mcs_set[1] &= mcs_rate_2r; mcs_set[2] &= mcs_rate_3r; mcs_set[3] &= mcs_rate_4r; } void UpdateBrateTbl( IN PADAPTER Adapter, IN u8 *mBratesOS ) { u8 i; u8 rate; // 1M, 2M, 5.5M, 11M, 6M, 12M, 24M are mandatory. for(i=0;iiface_type == IFACE_PORT1) { Set_NETYPE1_MSR(padapter, type); } else #endif { Set_NETYPE0_MSR(padapter, type); } } inline u8 rtw_get_oper_ch(_adapter *adapter) { return adapter_to_dvobj(adapter)->oper_channel; } inline void rtw_set_oper_ch(_adapter *adapter, u8 ch) { #ifdef DBG_CH_SWITCH const int len = 128; char msg[128] = {0}; int cnt = 0; int i = 0; #endif /* DBG_CH_SWITCH */ struct dvobj_priv *dvobj = adapter_to_dvobj(adapter); if (dvobj->oper_channel != ch) { dvobj->on_oper_ch_time = rtw_get_current_time(); #ifdef DBG_CH_SWITCH cnt += snprintf(msg+cnt, len-cnt, "switch to ch %3u", ch); for (i = 0; i < dvobj->iface_nums; i++) { _adapter *iface = dvobj->padapters[i]; cnt += snprintf(msg+cnt, len-cnt, " ["ADPT_FMT":", ADPT_ARG(iface)); if (iface->mlmeextpriv.cur_channel == ch) cnt += snprintf(msg+cnt, len-cnt, "C"); else cnt += snprintf(msg+cnt, len-cnt, "_"); if (iface->wdinfo.listen_channel == ch && !rtw_p2p_chk_state(&iface->wdinfo, P2P_STATE_NONE)) cnt += snprintf(msg+cnt, len-cnt, "L"); else cnt += snprintf(msg+cnt, len-cnt, "_"); cnt += snprintf(msg+cnt, len-cnt, "]"); } DBG_871X(FUNC_ADPT_FMT" %s\n", FUNC_ADPT_ARG(adapter), msg); #endif /* DBG_CH_SWITCH */ } dvobj->oper_channel = ch; } inline u8 rtw_get_oper_bw(_adapter *adapter) { return adapter_to_dvobj(adapter)->oper_bwmode; } inline void rtw_set_oper_bw(_adapter *adapter, u8 bw) { adapter_to_dvobj(adapter)->oper_bwmode = bw; } inline u8 rtw_get_oper_choffset(_adapter *adapter) { return adapter_to_dvobj(adapter)->oper_ch_offset; } inline void rtw_set_oper_choffset(_adapter *adapter, u8 offset) { adapter_to_dvobj(adapter)->oper_ch_offset = offset; } u8 rtw_get_offset_by_ch(u8 channel) { u8 offset = HAL_PRIME_CHNL_OFFSET_DONT_CARE; if(channel>=1 && channel<=4) { offset = HAL_PRIME_CHNL_OFFSET_LOWER; } else if(channel>=5 && channel<=14) { offset = HAL_PRIME_CHNL_OFFSET_UPPER; } else { switch(channel) { case 36: case 44: case 52: case 60: case 100: case 108: case 116: case 124: case 132: case 149: case 157: offset = HAL_PRIME_CHNL_OFFSET_LOWER; break; case 40: case 48: case 56: case 64: case 104: case 112: case 120: case 128: case 136: case 153: case 161: offset = HAL_PRIME_CHNL_OFFSET_UPPER; break; default: offset = HAL_PRIME_CHNL_OFFSET_DONT_CARE; break; } } return offset; } u8 rtw_get_center_ch(u8 channel, u8 chnl_bw, u8 chnl_offset) { u8 center_ch = channel; if(chnl_bw == CHANNEL_WIDTH_80) { if((channel == 36) || (channel == 40) || (channel == 44) || (channel == 48) ) center_ch = 42; if((channel == 52) || (channel == 56) || (channel == 60) || (channel == 64) ) center_ch = 58; if((channel == 100) || (channel == 104) || (channel == 108) || (channel == 112) ) center_ch = 106; if((channel == 116) || (channel == 120) || (channel == 124) || (channel == 128) ) center_ch = 122; if((channel == 132) || (channel == 136) || (channel == 140) || (channel == 144) ) center_ch = 138; if((channel == 149) || (channel == 153) || (channel == 157) || (channel == 161) ) center_ch = 155; else if(channel <= 14) center_ch = 7; } else if(chnl_bw == CHANNEL_WIDTH_40) { if (chnl_offset == HAL_PRIME_CHNL_OFFSET_LOWER) center_ch = channel + 2; else center_ch = channel - 2; } return center_ch; } inline u32 rtw_get_on_oper_ch_time(_adapter *adapter) { return adapter_to_dvobj(adapter)->on_oper_ch_time; } inline u32 rtw_get_on_cur_ch_time(_adapter *adapter) { if (adapter->mlmeextpriv.cur_channel == adapter_to_dvobj(adapter)->oper_channel) return adapter_to_dvobj(adapter)->on_oper_ch_time; else return 0; } void SelectChannel(_adapter *padapter, unsigned char channel) { struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; _enter_critical_mutex(&(adapter_to_dvobj(padapter)->setch_mutex), NULL); #ifdef CONFIG_DFS_MASTER { struct rf_ctl_t *rfctl = adapter_to_rfctl(padapter); bool ori_overlap_radar_detect_ch = rtw_rfctl_overlap_radar_detect_ch(rfctl); bool new_overlap_radar_detect_ch = _rtw_rfctl_overlap_radar_detect_ch(rfctl, channel , adapter_to_dvobj(padapter)->oper_bwmode, adapter_to_dvobj(padapter)->oper_ch_offset); if (!ori_overlap_radar_detect_ch && new_overlap_radar_detect_ch) rtw_odm_radar_detect_enable(padapter); if (new_overlap_radar_detect_ch && IS_UNDER_CAC(rfctl)) { u8 pause = 0xFF; rtw_hal_set_hwreg(padapter, HW_VAR_TXPAUSE, &pause); } #endif /* CONFIG_DFS_MASTER */ //saved channel info rtw_set_oper_ch(padapter, channel); rtw_hal_set_chan(padapter, channel); #ifdef CONFIG_DFS_MASTER if (ori_overlap_radar_detect_ch && !new_overlap_radar_detect_ch) { u8 pause = 0x00; rtw_odm_radar_detect_disable(padapter); rtw_hal_set_hwreg(padapter, HW_VAR_TXPAUSE, &pause); } } #endif /* CONFIG_DFS_MASTER */ _exit_critical_mutex(&(adapter_to_dvobj(padapter)->setch_mutex), NULL); } void SetBWMode(_adapter *padapter, unsigned short bwmode, unsigned char channel_offset) { struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; _enter_critical_mutex(&(adapter_to_dvobj(padapter)->setbw_mutex), NULL); #ifdef CONFIG_DFS_MASTER { struct rf_ctl_t *rfctl = adapter_to_rfctl(padapter); bool ori_overlap_radar_detect_ch = rtw_rfctl_overlap_radar_detect_ch(rfctl); bool new_overlap_radar_detect_ch = _rtw_rfctl_overlap_radar_detect_ch(rfctl , adapter_to_dvobj(padapter)->oper_channel, bwmode, channel_offset); if (!ori_overlap_radar_detect_ch && new_overlap_radar_detect_ch) rtw_odm_radar_detect_enable(padapter); if (new_overlap_radar_detect_ch && IS_UNDER_CAC(rfctl)) { u8 pause = 0xFF; rtw_hal_set_hwreg(padapter, HW_VAR_TXPAUSE, &pause); } #endif /* CONFIG_DFS_MASTER */ //saved bw info rtw_set_oper_bw(padapter, bwmode); rtw_set_oper_choffset(padapter, channel_offset); rtw_hal_set_bwmode(padapter, (CHANNEL_WIDTH)bwmode, channel_offset); #ifdef CONFIG_DFS_MASTER if (ori_overlap_radar_detect_ch && !new_overlap_radar_detect_ch) { u8 pause = 0x00; rtw_odm_radar_detect_disable(padapter); rtw_hal_set_hwreg(padapter, HW_VAR_TXPAUSE, &pause); } } #endif /* CONFIG_DFS_MASTER */ _exit_critical_mutex(&(adapter_to_dvobj(padapter)->setbw_mutex), NULL); } void set_channel_bwmode(_adapter *padapter, unsigned char channel, unsigned char channel_offset, unsigned short bwmode) { u8 center_ch, chnl_offset80 = HAL_PRIME_CHNL_OFFSET_DONT_CARE; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; if ( padapter->bNotifyChannelChange ) { DBG_871X( "[%s] ch = %d, offset = %d, bwmode = %d\n", __FUNCTION__, channel, channel_offset, bwmode ); } center_ch = rtw_get_center_ch(channel, bwmode, channel_offset); if(bwmode == CHANNEL_WIDTH_80) { if(center_ch > channel) chnl_offset80 = HAL_PRIME_CHNL_OFFSET_LOWER; else if(center_ch < channel) chnl_offset80 = HAL_PRIME_CHNL_OFFSET_UPPER; else chnl_offset80 = HAL_PRIME_CHNL_OFFSET_DONT_CARE; } _enter_critical_mutex(&(adapter_to_dvobj(padapter)->setch_mutex), NULL); #ifdef CONFIG_DFS_MASTER { struct rf_ctl_t *rfctl = adapter_to_rfctl(padapter); bool ori_overlap_radar_detect_ch = rtw_rfctl_overlap_radar_detect_ch(rfctl); bool new_overlap_radar_detect_ch = _rtw_rfctl_overlap_radar_detect_ch(rfctl, channel, bwmode, channel_offset); if (!ori_overlap_radar_detect_ch && new_overlap_radar_detect_ch) rtw_odm_radar_detect_enable(padapter); if (new_overlap_radar_detect_ch && IS_UNDER_CAC(rfctl)) { u8 pause = 0xFF; rtw_hal_set_hwreg(padapter, HW_VAR_TXPAUSE, &pause); } #endif /* CONFIG_DFS_MASTER */ //set Channel //saved channel/bw info rtw_set_oper_ch(padapter, channel); rtw_set_oper_bw(padapter, bwmode); rtw_set_oper_choffset(padapter, channel_offset); rtw_hal_set_chnl_bw(padapter, center_ch, bwmode, channel_offset, chnl_offset80); // set center channel #ifdef CONFIG_DFS_MASTER if (ori_overlap_radar_detect_ch && !new_overlap_radar_detect_ch) { u8 pause = 0x00; rtw_odm_radar_detect_disable(padapter); rtw_hal_set_hwreg(padapter, HW_VAR_TXPAUSE, &pause); } } #endif /* CONFIG_DFS_MASTER */ _exit_critical_mutex(&(adapter_to_dvobj(padapter)->setch_mutex), NULL); } int get_bsstype(unsigned short capability) { if (capability & BIT(0)) { return WIFI_FW_AP_STATE; } else if (capability & BIT(1)) { return WIFI_FW_ADHOC_STATE; } else { return 0; } } __inline u8 *get_my_bssid(WLAN_BSSID_EX *pnetwork) { return (pnetwork->MacAddress); } u16 get_beacon_interval(WLAN_BSSID_EX *bss) { unsigned short val; _rtw_memcpy((unsigned char *)&val, rtw_get_beacon_interval_from_ie(bss->IEs), 2); return le16_to_cpu(val); } int is_client_associated_to_ap(_adapter *padapter) { struct mlme_ext_priv *pmlmeext; struct mlme_ext_info *pmlmeinfo; if(!padapter) return _FAIL; pmlmeext = &padapter->mlmeextpriv; pmlmeinfo = &(pmlmeext->mlmext_info); if ((pmlmeinfo->state & WIFI_FW_ASSOC_SUCCESS) && ((pmlmeinfo->state&0x03) == WIFI_FW_STATION_STATE)) { return _TRUE; } else { return _FAIL; } } int is_client_associated_to_ibss(_adapter *padapter) { struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); if ((pmlmeinfo->state & WIFI_FW_ASSOC_SUCCESS) && ((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE)) { return _TRUE; } else { return _FAIL; } } int is_IBSS_empty(_adapter *padapter) { unsigned int i; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); for (i = IBSS_START_MAC_ID; i < NUM_STA; i++) { if (pmlmeinfo->FW_sta_info[i].status == 1) { return _FAIL; } } return _TRUE; } unsigned int decide_wait_for_beacon_timeout(unsigned int bcn_interval) { if ((bcn_interval << 2) < WAIT_FOR_BCN_TO_MIN) { return WAIT_FOR_BCN_TO_MIN; } else if ((bcn_interval << 2) > WAIT_FOR_BCN_TO_MAX) { return WAIT_FOR_BCN_TO_MAX; } else { return ((bcn_interval << 2)); } } void CAM_empty_entry( PADAPTER Adapter, u8 ucIndex ) { rtw_hal_set_hwreg(Adapter, HW_VAR_CAM_EMPTY_ENTRY, (u8 *)(&ucIndex)); } void invalidate_cam_all(_adapter *padapter) { struct dvobj_priv *dvobj = adapter_to_dvobj(padapter); struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl; _irqL irqL; u8 val8 = 0; rtw_hal_set_hwreg(padapter, HW_VAR_CAM_INVALID_ALL, &val8); _enter_critical_bh(&cam_ctl->lock, &irqL); rtw_sec_cam_map_clr_all(&cam_ctl->used); _rtw_memset(dvobj->cam_cache, 0, sizeof(struct sec_cam_ent) * SEC_CAM_ENT_NUM_SW_LIMIT); _exit_critical_bh(&cam_ctl->lock, &irqL); } void _clear_cam_entry(_adapter *padapter, u8 entry) { unsigned char null_sta[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; unsigned char null_key[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x00, 0x00, 0x00, 0x00,0x00, 0x00, 0x00, 0x00}; rtw_sec_write_cam_ent(padapter, entry, 0, null_sta, null_key); } inline void write_cam(_adapter *adapter, u8 id, u16 ctrl, u8 *mac, u8 *key) { #ifdef CONFIG_WRITE_CACHE_ONLY write_cam_cache(adapter, id ,ctrl, mac, key); #else rtw_sec_write_cam_ent(adapter, id, ctrl, mac, key); write_cam_cache(adapter, id ,ctrl, mac, key); #endif } inline void clear_cam_entry(_adapter *adapter, u8 id) { _clear_cam_entry(adapter, id); clear_cam_cache(adapter, id); } inline void write_cam_from_cache(_adapter *adapter, u8 id) { struct dvobj_priv *dvobj = adapter_to_dvobj(adapter); struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl; _irqL irqL; struct sec_cam_ent cache; _enter_critical_bh(&cam_ctl->lock, &irqL); _rtw_memcpy(&cache, &dvobj->cam_cache[id], sizeof(struct sec_cam_ent)); _exit_critical_bh(&cam_ctl->lock, &irqL); rtw_sec_write_cam_ent(adapter, id, cache.ctrl, cache.mac, cache.key); } void write_cam_cache(_adapter *adapter, u8 id, u16 ctrl, u8 *mac, u8 *key) { struct dvobj_priv *dvobj = adapter_to_dvobj(adapter); struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl; _irqL irqL; _enter_critical_bh(&cam_ctl->lock, &irqL); dvobj->cam_cache[id].ctrl = ctrl; _rtw_memcpy(dvobj->cam_cache[id].mac, mac, ETH_ALEN); _rtw_memcpy(dvobj->cam_cache[id].key, key, 16); _exit_critical_bh(&cam_ctl->lock, &irqL); } void clear_cam_cache(_adapter *adapter, u8 id) { struct dvobj_priv *dvobj = adapter_to_dvobj(adapter); struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl; _irqL irqL; _enter_critical_bh(&cam_ctl->lock, &irqL); _rtw_memset(&(dvobj->cam_cache[id]), 0, sizeof(struct sec_cam_ent)); _exit_critical_bh(&cam_ctl->lock, &irqL); } s16 rtw_get_camid(_adapter *adapter, struct sta_info *sta, s16 kid) { u8 macid; s16 camid; //cam_entry: //0~3 for default key //for concurrent mode (ap+sta, sta+sta): //default key is disable, using sw encrypt/decrypt //camid 0, 1, 2, 3 is default entry for default key/group key //macid = 1 is for bc/mc stainfo, no mapping to camid //macid = 0 mapping to camid 4 //for macid >=2, camid = macid+3; if (sta) { struct mlme_ext_info *mlmeinfo = &adapter->mlmeextpriv.mlmext_info; macid = sta->mac_id; if((mlmeinfo->state&0x03) == WIFI_FW_AP_STATE) { if((macid == 1) || (macid>(NUM_STA-4))){ DBG_871X_LEVEL(_drv_always_, FUNC_ADPT_FMT" failed, mac_id=%d\n", FUNC_ADPT_ARG(adapter), macid); camid = -1; goto exit; } } if(macid==0) camid = 4; else if(macid >=2) camid = macid + 3; else camid = 4; } else { /* default key is disabled */ camid = -1; } exit: return (s16)camid; } inline bool _rtw_camctl_chk_cap(_adapter *adapter, u8 cap) { struct dvobj_priv *dvobj = adapter_to_dvobj(adapter); struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl; if (cam_ctl->sec_cap & cap) return _TRUE; return _FALSE; } inline void _rtw_camctl_set_flags(_adapter *adapter, u32 flags) { struct dvobj_priv *dvobj = adapter_to_dvobj(adapter); struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl; cam_ctl->flags |= flags; } inline void rtw_camctl_set_flags(_adapter *adapter, u32 flags) { struct dvobj_priv *dvobj = adapter_to_dvobj(adapter); struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl; _irqL irqL; _enter_critical_bh(&cam_ctl->lock, &irqL); _rtw_camctl_set_flags(adapter, flags); _exit_critical_bh(&cam_ctl->lock, &irqL); } inline void _rtw_camctl_clr_flags(_adapter *adapter, u32 flags) { struct dvobj_priv *dvobj = adapter_to_dvobj(adapter); struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl; cam_ctl->flags &= ~flags; } inline void rtw_camctl_clr_flags(_adapter *adapter, u32 flags) { struct dvobj_priv *dvobj = adapter_to_dvobj(adapter); struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl; _irqL irqL; _enter_critical_bh(&cam_ctl->lock, &irqL); _rtw_camctl_clr_flags(adapter, flags); _exit_critical_bh(&cam_ctl->lock, &irqL); } inline bool _rtw_camctl_chk_flags(_adapter *adapter, u32 flags) { struct dvobj_priv *dvobj = adapter_to_dvobj(adapter); struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl; if (cam_ctl->flags & flags) return _TRUE; return _FALSE; } void dump_sec_cam_map(void *sel, struct sec_cam_bmp *map, u8 max_num) { DBG_871X_SEL_NL(sel, "0x%08x\n", map->m0); #if (SEC_CAM_ENT_NUM_SW_LIMIT > 32) if (max_num && max_num > 32) DBG_871X_SEL_NL(sel, "0x%08x\n", map->m1); #endif #if (SEC_CAM_ENT_NUM_SW_LIMIT > 64) if (max_num && max_num > 64) DBG_871X_SEL_NL(sel, "0x%08x\n", map->m2); #endif #if (SEC_CAM_ENT_NUM_SW_LIMIT > 96) if (max_num && max_num > 96) DBG_871X_SEL_NL(sel, "0x%08x\n", map->m3); #endif } inline bool rtw_sec_camid_is_set(struct sec_cam_bmp *map, u8 id) { if (id < 32) return (map->m0 & BIT(id)); #if (SEC_CAM_ENT_NUM_SW_LIMIT > 32) else if (id < 64) return (map->m1 & BIT(id - 32)); #endif #if (SEC_CAM_ENT_NUM_SW_LIMIT > 64) else if (id < 96) return (map->m2 & BIT(id - 64)); #endif #if (SEC_CAM_ENT_NUM_SW_LIMIT > 96) else if (id < 128) return (map->m3 & BIT(id - 96)); #endif else rtw_warn_on(1); return 0; } inline void rtw_sec_cam_map_set(struct sec_cam_bmp *map, u8 id) { if (id < 32) map->m0 |= BIT(id); #if (SEC_CAM_ENT_NUM_SW_LIMIT > 32) else if (id < 64) map->m1 |= BIT(id - 32); #endif #if (SEC_CAM_ENT_NUM_SW_LIMIT > 64) else if (id < 96) map->m2 |= BIT(id - 64); #endif #if (SEC_CAM_ENT_NUM_SW_LIMIT > 96) else if (id < 128) map->m3 |= BIT(id - 96); #endif else rtw_warn_on(1); } inline void rtw_sec_cam_map_clr(struct sec_cam_bmp *map, u8 id) { if (id < 32) map->m0 &= ~BIT(id); #if (SEC_CAM_ENT_NUM_SW_LIMIT > 32) else if (id < 64) map->m1 &= ~BIT(id-32); #endif #if (SEC_CAM_ENT_NUM_SW_LIMIT > 64) else if (id < 96) map->m2 &= ~BIT(id-64); #endif #if (SEC_CAM_ENT_NUM_SW_LIMIT > 96) else if (id < 128) map->m3 &= ~BIT(id-96); #endif else rtw_warn_on(1); } inline void rtw_sec_cam_map_clr_all(struct sec_cam_bmp *map) { map->m0 = 0; #if (SEC_CAM_ENT_NUM_SW_LIMIT > 32) map->m1 = 0; #endif #if (SEC_CAM_ENT_NUM_SW_LIMIT > 64) map->m2 = 0; #endif #if (SEC_CAM_ENT_NUM_SW_LIMIT > 96) map->m3 = 0; #endif } inline bool rtw_sec_camid_is_drv_forbid(struct cam_ctl_t *cam_ctl, u8 id) { struct sec_cam_bmp forbid_map; forbid_map.m0 = 0x00000ff0; #if (SEC_CAM_ENT_NUM_SW_LIMIT > 32) forbid_map.m1 = 0x00000000; #endif #if (SEC_CAM_ENT_NUM_SW_LIMIT > 64) forbid_map.m2 = 0x00000000; #endif #if (SEC_CAM_ENT_NUM_SW_LIMIT > 96) forbid_map.m3 = 0x00000000; #endif if (id < 32) return (forbid_map.m0 & BIT(id)); #if (SEC_CAM_ENT_NUM_SW_LIMIT > 32) else if (id < 64) return (forbid_map.m1 & BIT(id - 32)); #endif #if (SEC_CAM_ENT_NUM_SW_LIMIT > 64) else if (id < 96) return (forbid_map.m2 & BIT(id - 64)); #endif #if (SEC_CAM_ENT_NUM_SW_LIMIT > 96) else if (id < 128) return (forbid_map.m3 & BIT(id - 96)); #endif else rtw_warn_on(1); return 1; } bool _rtw_sec_camid_is_used(struct cam_ctl_t *cam_ctl, u8 id) { bool ret = _FALSE; if (id >= cam_ctl->num) { rtw_warn_on(1); goto exit; } #if 0 /* for testing */ if (rtw_sec_camid_is_drv_forbid(cam_ctl, id)) { ret = _TRUE; goto exit; } #endif ret = rtw_sec_camid_is_set(&cam_ctl->used, id); exit: return ret; } inline bool rtw_sec_camid_is_used(struct cam_ctl_t *cam_ctl, u8 id) { _irqL irqL; bool ret; _enter_critical_bh(&cam_ctl->lock, &irqL); ret = _rtw_sec_camid_is_used(cam_ctl, id); _exit_critical_bh(&cam_ctl->lock, &irqL); return ret; } inline bool _rtw_camid_is_gk(_adapter *adapter, u8 cam_id) { struct dvobj_priv *dvobj = adapter_to_dvobj(adapter); struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl; bool ret = _FALSE; if (cam_id >= cam_ctl->num) { rtw_warn_on(1); goto exit; } if (_rtw_sec_camid_is_used(cam_ctl, cam_id) == _FALSE) goto exit; ret = (dvobj->cam_cache[cam_id].ctrl&BIT6)?_TRUE:_FALSE; exit: return ret; } inline bool rtw_camid_is_gk(_adapter *adapter, u8 cam_id) { struct dvobj_priv *dvobj = adapter_to_dvobj(adapter); struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl; _irqL irqL; bool ret; _enter_critical_bh(&cam_ctl->lock, &irqL); ret = _rtw_camid_is_gk(adapter, cam_id); _exit_critical_bh(&cam_ctl->lock, &irqL); return ret; } bool cam_cache_chk(_adapter *adapter, u8 id, u8 *addr, s16 kid, s8 gk) { struct dvobj_priv *dvobj = adapter_to_dvobj(adapter); bool ret = _FALSE; if (addr && _rtw_memcmp(dvobj->cam_cache[id].mac, addr, ETH_ALEN) == _FALSE) goto exit; if (kid >= 0 && kid != (dvobj->cam_cache[id].ctrl&0x03)) goto exit; if (gk != -1 && (gk?_TRUE:_FALSE) != _rtw_camid_is_gk(adapter, id)) goto exit; ret = _TRUE; exit: return ret; } s16 _rtw_camid_search(_adapter *adapter, u8 *addr, s16 kid, s8 gk) { struct dvobj_priv *dvobj = adapter_to_dvobj(adapter); struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl; int i; s16 cam_id = -1; for (i = 0; i < cam_ctl->num; i++) { if (cam_cache_chk(adapter, i, addr, kid, gk)) { cam_id = i; break; } } if (0) { if (addr) DBG_871X(FUNC_ADPT_FMT" addr:"MAC_FMT" kid:%d, gk:%d, return cam_id:%d\n" , FUNC_ADPT_ARG(adapter), MAC_ARG(addr), kid, gk, cam_id); else DBG_871X(FUNC_ADPT_FMT" addr:%p kid:%d, gk:%d, return cam_id:%d\n" , FUNC_ADPT_ARG(adapter), addr, kid, gk, cam_id); } return cam_id; } s16 rtw_camid_search(_adapter *adapter, u8 *addr, s16 kid, s8 gk) { struct dvobj_priv *dvobj = adapter_to_dvobj(adapter); struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl; _irqL irqL; s16 cam_id = -1; _enter_critical_bh(&cam_ctl->lock, &irqL); cam_id = _rtw_camid_search(adapter, addr, kid, gk); _exit_critical_bh(&cam_ctl->lock, &irqL); return cam_id; } s16 rtw_camid_alloc(_adapter *adapter, struct sta_info *sta, u8 kid, bool *used) { struct dvobj_priv *dvobj = adapter_to_dvobj(adapter); struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl; _irqL irqL; s16 cam_id = -1; *used = _FALSE; _enter_critical_bh(&cam_ctl->lock, &irqL); #ifdef DYNAMIC_CAMID_ALLOC { struct mlme_ext_info *mlmeinfo = &adapter->mlmeextpriv.mlmext_info; if((((mlmeinfo->state&0x03) == WIFI_FW_AP_STATE) || ((mlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE)) && !sta) { /* AP/Ad-hoc mode group key: static alloction to default key by key ID */ if (kid > 3) { DBG_871X_LEVEL(_drv_always_, FUNC_ADPT_FMT" group key with invalid key id:%u\n" , FUNC_ADPT_ARG(adapter), kid); rtw_warn_on(1); goto bitmap_handle; } cam_id = kid; } else { int i; u8 *addr = sta?sta->hwaddr:NULL; #if 0 /* for testing */ static u8 start_id = 0; #else u8 start_id = 0; #endif if(!sta) { if (!(mlmeinfo->state & WIFI_FW_ASSOC_SUCCESS)) { /* bypass STA mode group key setting before connected(ex:WEP) because bssid is not ready */ goto bitmap_handle; } addr = get_bssid(&adapter->mlmepriv); } /* find cam entry which has the same addr, kid (, gk bit) */ if (_rtw_camctl_chk_cap(adapter, SEC_CAP_CHK_BMC) == _TRUE) i = _rtw_camid_search(adapter, addr, kid, sta?_FALSE:_TRUE); else i = _rtw_camid_search(adapter, addr, kid, -1); if (i >= 0) { cam_id = i; goto bitmap_handle; } for (i = 0; i < cam_ctl->num; i++) { /* bypass default key which is allocated statically */ if (((i + start_id) % cam_ctl->num) < 4) continue; if (_rtw_sec_camid_is_used(cam_ctl, ((i + start_id) % cam_ctl->num)) == _FALSE) break; } if (i == cam_ctl->num) { if (sta) DBG_871X_LEVEL(_drv_always_, FUNC_ADPT_FMT" pairwise key with "MAC_FMT" id:%u no room\n" , FUNC_ADPT_ARG(adapter), MAC_ARG(addr), kid); else DBG_871X_LEVEL(_drv_always_, FUNC_ADPT_FMT" group key with "MAC_FMT" id:%u no room\n" , FUNC_ADPT_ARG(adapter), MAC_ARG(addr), kid); rtw_warn_on(1); goto bitmap_handle; } cam_id = ((i + start_id) % cam_ctl->num); start_id = ((i + start_id + 1) % cam_ctl->num); } } #else cam_id = rtw_get_camid(adapter, sta, kid); #endif /* DYNAMIC_CAMID_ALLOC */ bitmap_handle: if (cam_id >= 0) { *used = _rtw_sec_camid_is_used(cam_ctl, cam_id); rtw_sec_cam_map_set(&cam_ctl->used, cam_id); } _exit_critical_bh(&cam_ctl->lock, &irqL); return cam_id; } void rtw_camid_free(_adapter *adapter, u8 cam_id) { struct dvobj_priv *dvobj = adapter_to_dvobj(adapter); struct cam_ctl_t *cam_ctl = &dvobj->cam_ctl; _irqL irqL; _enter_critical_bh(&cam_ctl->lock, &irqL); if (cam_id < cam_ctl->num) rtw_sec_cam_map_clr(&cam_ctl->used, cam_id); _exit_critical_bh(&cam_ctl->lock, &irqL); } int allocate_fw_sta_entry(_adapter *padapter) { unsigned int mac_id; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); for (mac_id = IBSS_START_MAC_ID; mac_id < NUM_STA; mac_id++) { if (pmlmeinfo->FW_sta_info[mac_id].status == 0) { pmlmeinfo->FW_sta_info[mac_id].status = 1; pmlmeinfo->FW_sta_info[mac_id].retry = 0; break; } } return mac_id; } void flush_all_cam_entry(_adapter *padapter) { struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); struct mlme_priv *pmlmepriv = &(padapter->mlmepriv); #ifdef CONFIG_CONCURRENT_MODE if(check_buddy_fwstate(padapter, _FW_LINKED) == _TRUE) { if(check_fwstate(pmlmepriv, WIFI_STATION_STATE)) { struct sta_priv *pstapriv = &padapter->stapriv; struct sta_info *psta; psta = rtw_get_stainfo(pstapriv, pmlmeinfo->network.MacAddress); if(psta) { if(psta->state & WIFI_AP_STATE) {} //clear cam when ap free per sta_info else { rtw_clearstakey_cmd(padapter, psta, _FALSE); } } } else if(check_fwstate(pmlmepriv, WIFI_AP_STATE) == _TRUE) { /* clear default key */ int i, cam_id; u8 null_addr[ETH_ALEN]= {0,0,0,0,0,0}; for (i=0;i<4;i++) { cam_id = rtw_camid_search(padapter, null_addr, i, -1); if (cam_id >= 0) { clear_cam_entry(padapter, cam_id); rtw_camid_free(padapter, cam_id); } } /* clear default key related key search setting */ #ifdef DYNAMIC_CAMID_ALLOC rtw_hal_set_hwreg(padapter, HW_VAR_SEC_DK_CFG, (u8*)_FALSE); #endif /* leave pairwise key when ap free per sta_info */ } } else #endif //CONFIG_CONCURRENT_MODE { invalidate_cam_all(padapter); /* clear default key related key search setting */ #ifdef DYNAMIC_CAMID_ALLOC rtw_hal_set_hwreg(padapter, HW_VAR_SEC_DK_CFG, (u8*)_FALSE); #endif } _rtw_memset((u8 *)(pmlmeinfo->FW_sta_info), 0, sizeof(pmlmeinfo->FW_sta_info)); } #if defined(CONFIG_P2P) && defined(CONFIG_WFD) void rtw_process_wfd_ie(_adapter *adapter, u8 *wfd_ie, u8 wfd_ielen, const char *tag) { struct wifidirect_info *wdinfo = &adapter->wdinfo; u8 *attr_content; u32 attr_contentlen = 0; if (!hal_chk_wl_func(adapter, WL_FUNC_MIRACAST)) return; DBG_871X("[%s] Found WFD IE\n", tag); attr_content = rtw_get_wfd_attr_content(wfd_ie, wfd_ielen, WFD_ATTR_DEVICE_INFO, NULL, &attr_contentlen); if (attr_content && attr_contentlen) { wdinfo->wfd_info->peer_rtsp_ctrlport = RTW_GET_BE16(attr_content + 2); DBG_871X("[%s] Peer PORT NUM = %d\n", tag, wdinfo->wfd_info->peer_rtsp_ctrlport); } } void rtw_process_wfd_ies(_adapter *adapter, u8 *ies, u8 ies_len, const char *tag) { u8 *wfd_ie; u32 wfd_ielen; if (!hal_chk_wl_func(adapter, WL_FUNC_MIRACAST)) return; wfd_ie = rtw_get_wfd_ie(ies, ies_len, NULL, &wfd_ielen); while (wfd_ie) { rtw_process_wfd_ie(adapter, wfd_ie, wfd_ielen, tag); wfd_ie = rtw_get_wfd_ie(wfd_ie + wfd_ielen, (ies + ies_len) - (wfd_ie + wfd_ielen), NULL, &wfd_ielen); } } #endif /* defined(CONFIG_P2P) && defined(CONFIG_WFD) */ int WMM_param_handler(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE) { //struct registry_priv *pregpriv = &padapter->registrypriv; struct mlme_priv *pmlmepriv = &(padapter->mlmepriv); struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); if(pmlmepriv->qospriv.qos_option==0) { pmlmeinfo->WMM_enable = 0; return _FALSE; } if(_rtw_memcmp(&(pmlmeinfo->WMM_param), (pIE->data + 6), sizeof(struct WMM_para_element))) { return _FALSE; } else { _rtw_memcpy(&(pmlmeinfo->WMM_param), (pIE->data + 6), sizeof(struct WMM_para_element)); } pmlmeinfo->WMM_enable = 1; return _TRUE; /*if (pregpriv->wifi_spec == 1) { if (pmlmeinfo->WMM_enable == 1) { //todo: compare the parameter set count & decide wheher to update or not return _FAIL; } else { pmlmeinfo->WMM_enable = 1; _rtw_rtw_memcpy(&(pmlmeinfo->WMM_param), (pIE->data + 6), sizeof(struct WMM_para_element)); return _TRUE; } } else { pmlmeinfo->WMM_enable = 0; return _FAIL; }*/ } void WMMOnAssocRsp(_adapter *padapter) { u8 ACI, ACM, AIFS, ECWMin, ECWMax, aSifsTime; u8 acm_mask; u16 TXOP; u32 acParm, i; u32 edca[4], inx[4]; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); struct xmit_priv *pxmitpriv = &padapter->xmitpriv; struct registry_priv *pregpriv = &padapter->registrypriv; acm_mask = 0; if (IsSupported5G(pmlmeext->cur_wireless_mode) || (pmlmeext->cur_wireless_mode & WIRELESS_11_24N) ) aSifsTime = 16; else aSifsTime = 10; if (pmlmeinfo->WMM_enable == 0) { padapter->mlmepriv.acm_mask = 0; AIFS = aSifsTime + (2 * pmlmeinfo->slotTime); if (pmlmeext->cur_wireless_mode & (WIRELESS_11G |WIRELESS_11A)) { ECWMin = 4; ECWMax = 10; } else if (pmlmeext->cur_wireless_mode & WIRELESS_11B) { ECWMin = 5; ECWMax = 10; } else { ECWMin = 4; ECWMax = 10; } TXOP = 0; acParm = AIFS | (ECWMin << 8) | (ECWMax << 12) | (TXOP << 16); rtw_hal_set_hwreg(padapter, HW_VAR_AC_PARAM_BE, (u8 *)(&acParm)); rtw_hal_set_hwreg(padapter, HW_VAR_AC_PARAM_BK, (u8 *)(&acParm)); rtw_hal_set_hwreg(padapter, HW_VAR_AC_PARAM_VI, (u8 *)(&acParm)); ECWMin = 2; ECWMax = 3; TXOP = 0x2f; acParm = AIFS | (ECWMin << 8) | (ECWMax << 12) | (TXOP << 16); rtw_hal_set_hwreg(padapter, HW_VAR_AC_PARAM_VO, (u8 *)(&acParm)); } else { edca[0] = edca[1] = edca[2] = edca[3] = 0; for (i = 0; i < 4; i++) { ACI = (pmlmeinfo->WMM_param.ac_param[i].ACI_AIFSN >> 5) & 0x03; ACM = (pmlmeinfo->WMM_param.ac_param[i].ACI_AIFSN >> 4) & 0x01; //AIFS = AIFSN * slot time + SIFS - r2t phy delay AIFS = (pmlmeinfo->WMM_param.ac_param[i].ACI_AIFSN & 0x0f) * pmlmeinfo->slotTime + aSifsTime; ECWMin = (pmlmeinfo->WMM_param.ac_param[i].CW & 0x0f); ECWMax = (pmlmeinfo->WMM_param.ac_param[i].CW & 0xf0) >> 4; TXOP = le16_to_cpu(pmlmeinfo->WMM_param.ac_param[i].TXOP_limit); acParm = AIFS | (ECWMin << 8) | (ECWMax << 12) | (TXOP << 16); switch (ACI) { case 0x0: rtw_hal_set_hwreg(padapter, HW_VAR_AC_PARAM_BE, (u8 *)(&acParm)); acm_mask |= (ACM? BIT(1):0); edca[XMIT_BE_QUEUE] = acParm; break; case 0x1: rtw_hal_set_hwreg(padapter, HW_VAR_AC_PARAM_BK, (u8 *)(&acParm)); //acm_mask |= (ACM? BIT(0):0); edca[XMIT_BK_QUEUE] = acParm; break; case 0x2: rtw_hal_set_hwreg(padapter, HW_VAR_AC_PARAM_VI, (u8 *)(&acParm)); acm_mask |= (ACM? BIT(2):0); edca[XMIT_VI_QUEUE] = acParm; break; case 0x3: rtw_hal_set_hwreg(padapter, HW_VAR_AC_PARAM_VO, (u8 *)(&acParm)); acm_mask |= (ACM? BIT(3):0); edca[XMIT_VO_QUEUE] = acParm; break; } DBG_871X("WMM(%x): %x, %x\n", ACI, ACM, acParm); } if(padapter->registrypriv.acm_method == 1) rtw_hal_set_hwreg(padapter, HW_VAR_ACM_CTRL, (u8 *)(&acm_mask)); else padapter->mlmepriv.acm_mask = acm_mask; inx[0] = 0; inx[1] = 1; inx[2] = 2; inx[3] = 3; if(pregpriv->wifi_spec==1) { u32 j, tmp, change_inx=_FALSE; //entry indx: 0->vo, 1->vi, 2->be, 3->bk. for(i=0; i<4; i++) { for(j=i+1; j<4; j++) { //compare CW and AIFS if((edca[j] & 0xFFFF) < (edca[i] & 0xFFFF)) { change_inx = _TRUE; } else if((edca[j] & 0xFFFF) == (edca[i] & 0xFFFF)) { //compare TXOP if((edca[j] >> 16) > (edca[i] >> 16)) change_inx = _TRUE; } if(change_inx) { tmp = edca[i]; edca[i] = edca[j]; edca[j] = tmp; tmp = inx[i]; inx[i] = inx[j]; inx[j] = tmp; change_inx = _FALSE; } } } } for(i=0; i<4; i++) { pxmitpriv->wmm_para_seq[i] = inx[i]; DBG_871X("wmm_para_seq(%d): %d\n", i, pxmitpriv->wmm_para_seq[i]); } } } static void bwmode_update_check(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE) { #ifdef CONFIG_80211N_HT unsigned char new_bwmode; unsigned char new_ch_offset; struct HT_info_element *pHT_info; struct mlme_priv *pmlmepriv = &(padapter->mlmepriv); struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); struct registry_priv *pregistrypriv = &padapter->registrypriv; struct ht_priv *phtpriv = &pmlmepriv->htpriv; u8 cbw40_enable=0; if(!pIE) return; if(phtpriv->ht_option == _FALSE) return; if(pmlmeext->cur_bwmode >= CHANNEL_WIDTH_80) return; if(pIE->Length > sizeof(struct HT_info_element)) return; pHT_info = (struct HT_info_element *)pIE->data; if (hal_chk_bw_cap(padapter, BW_CAP_40M)) { if (pmlmeext->cur_channel > 14) { if (REGSTY_IS_BW_5G_SUPPORT(pregistrypriv, CHANNEL_WIDTH_40)) cbw40_enable = 1; } else { if (REGSTY_IS_BW_2G_SUPPORT(pregistrypriv, CHANNEL_WIDTH_40)) cbw40_enable = 1; } } if((pHT_info->infos[0] & BIT(2)) && cbw40_enable) { new_bwmode = CHANNEL_WIDTH_40; switch (pHT_info->infos[0] & 0x3) { case 1: new_ch_offset = HAL_PRIME_CHNL_OFFSET_LOWER; break; case 3: new_ch_offset = HAL_PRIME_CHNL_OFFSET_UPPER; break; default: new_bwmode = CHANNEL_WIDTH_20; new_ch_offset = HAL_PRIME_CHNL_OFFSET_DONT_CARE; break; } } else { new_bwmode = CHANNEL_WIDTH_20; new_ch_offset = HAL_PRIME_CHNL_OFFSET_DONT_CARE; } if ((new_bwmode != pmlmeext->cur_bwmode || new_ch_offset != pmlmeext->cur_ch_offset) && new_bwmode < pmlmeext->cur_bwmode ) { pmlmeinfo->bwmode_updated = _TRUE; pmlmeext->cur_bwmode = new_bwmode; pmlmeext->cur_ch_offset = new_ch_offset; //update HT info also HT_info_handler(padapter, pIE); } else { pmlmeinfo->bwmode_updated = _FALSE; } if(_TRUE == pmlmeinfo->bwmode_updated) { struct sta_info *psta; WLAN_BSSID_EX *cur_network = &(pmlmeinfo->network); struct sta_priv *pstapriv = &padapter->stapriv; //set_channel_bwmode(padapter, pmlmeext->cur_channel, pmlmeext->cur_ch_offset, pmlmeext->cur_bwmode); //update ap's stainfo psta = rtw_get_stainfo(pstapriv, cur_network->MacAddress); if(psta) { struct ht_priv *phtpriv_sta = &psta->htpriv; if(phtpriv_sta->ht_option) { // bwmode psta->bw_mode = pmlmeext->cur_bwmode; phtpriv_sta->ch_offset = pmlmeext->cur_ch_offset; } else { psta->bw_mode = CHANNEL_WIDTH_20; phtpriv_sta->ch_offset = HAL_PRIME_CHNL_OFFSET_DONT_CARE; } rtw_dm_ra_mask_wk_cmd(padapter, (u8 *)psta); } //pmlmeinfo->bwmode_updated = _FALSE;//bwmode_updated done, reset it! } #endif //CONFIG_80211N_HT } void HT_caps_handler(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE) { #ifdef CONFIG_80211N_HT unsigned int i; u8 rf_type = RF_1T1R; u8 max_AMPDU_len, min_MPDU_spacing; u8 cur_ldpc_cap=0, cur_stbc_cap=0, cur_beamform_cap=0; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); struct mlme_priv *pmlmepriv = &padapter->mlmepriv; struct ht_priv *phtpriv = &pmlmepriv->htpriv; struct registry_priv *pregistrypriv = &padapter->registrypriv; if(pIE==NULL) return; if(phtpriv->ht_option == _FALSE) return; pmlmeinfo->HT_caps_enable = 1; for (i = 0; i < (pIE->Length); i++) { if (i != 2) { // Commented by Albert 2010/07/12 // Got the endian issue here. pmlmeinfo->HT_caps.u.HT_cap[i] &= (pIE->data[i]); } else { /* AMPDU Parameters field */ /* Get MIN of MAX AMPDU Length Exp */ if ((pmlmeinfo->HT_caps.u.HT_cap_element.AMPDU_para & 0x3) > (pIE->data[i] & 0x3)) { max_AMPDU_len = (pIE->data[i] & 0x3); } else { max_AMPDU_len = (pmlmeinfo->HT_caps.u.HT_cap_element.AMPDU_para & 0x3); } /* Get MAX of MIN MPDU Start Spacing */ if ((pmlmeinfo->HT_caps.u.HT_cap_element.AMPDU_para & 0x1c) > (pIE->data[i] & 0x1c)) { min_MPDU_spacing = (pmlmeinfo->HT_caps.u.HT_cap_element.AMPDU_para & 0x1c); } else { min_MPDU_spacing = (pIE->data[i] & 0x1c); } pmlmeinfo->HT_caps.u.HT_cap_element.AMPDU_para = max_AMPDU_len | min_MPDU_spacing; } } // Commented by Albert 2010/07/12 // Have to handle the endian issue after copying. // HT_ext_caps didn't be used yet. pmlmeinfo->HT_caps.u.HT_cap_element.HT_caps_info = le16_to_cpu( pmlmeinfo->HT_caps.u.HT_cap_element.HT_caps_info ); pmlmeinfo->HT_caps.u.HT_cap_element.HT_ext_caps = le16_to_cpu( pmlmeinfo->HT_caps.u.HT_cap_element.HT_ext_caps ); rtw_hal_get_hwreg(padapter, HW_VAR_RF_TYPE, (u8 *)(&rf_type)); //update the MCS set for (i = 0; i < 16; i++) pmlmeinfo->HT_caps.u.HT_cap_element.MCS_rate[i] &= pmlmeext->default_supported_mcs_set[i]; //update the MCS rates switch(rf_type) { case RF_1T1R: case RF_1T2R: set_mcs_rate_by_mask(pmlmeinfo->HT_caps.u.HT_cap_element.MCS_rate, MCS_RATE_1R); break; case RF_2T2R: #ifdef CONFIG_DISABLE_MCS13TO15 if(pmlmeext->cur_bwmode == CHANNEL_WIDTH_40 && pregistrypriv->wifi_spec != 1 ) set_mcs_rate_by_mask(pmlmeinfo->HT_caps.u.HT_cap_element.MCS_rate, MCS_RATE_2R_13TO15_OFF); else set_mcs_rate_by_mask(pmlmeinfo->HT_caps.u.HT_cap_element.MCS_rate, MCS_RATE_2R); #else //CONFIG_DISABLE_MCS13TO15 set_mcs_rate_by_mask(pmlmeinfo->HT_caps.u.HT_cap_element.MCS_rate, MCS_RATE_2R); #endif //CONFIG_DISABLE_MCS13TO15 break; case RF_3T3R: set_mcs_rate_by_mask(pmlmeinfo->HT_caps.u.HT_cap_element.MCS_rate, MCS_RATE_3R); break; default: DBG_871X("[warning] rf_type %d is not expected\n", rf_type); } if (check_fwstate(pmlmepriv, WIFI_AP_STATE)) { // Config STBC setting if (TEST_FLAG(phtpriv->stbc_cap, STBC_HT_ENABLE_TX) && GET_HT_CAP_ELE_TX_STBC(pIE->data)) { SET_FLAG(cur_stbc_cap, STBC_HT_ENABLE_TX); DBG_871X("Enable HT Tx STBC !\n"); } phtpriv->stbc_cap = cur_stbc_cap; #ifdef CONFIG_BEAMFORMING // Config Tx beamforming setting if (TEST_FLAG(phtpriv->beamform_cap, BEAMFORMING_HT_BEAMFORMER_ENABLE) && GET_HT_CAP_TXBF_EXPLICIT_COMP_STEERING_CAP(pIE->data)) { SET_FLAG(cur_beamform_cap, BEAMFORMING_HT_BEAMFORMER_ENABLE); /* Shift to BEAMFORMING_HT_BEAMFORMEE_CHNL_EST_CAP*/ SET_FLAG(cur_beamform_cap, GET_HT_CAP_TXBF_CHNL_ESTIMATION_NUM_ANTENNAS(pIE->data) << 6); } if (TEST_FLAG(phtpriv->beamform_cap, BEAMFORMING_HT_BEAMFORMEE_ENABLE) && GET_HT_CAP_TXBF_EXPLICIT_COMP_FEEDBACK_CAP(pIE->data)) { SET_FLAG(cur_beamform_cap, BEAMFORMING_HT_BEAMFORMEE_ENABLE); /* Shift to BEAMFORMING_HT_BEAMFORMER_STEER_NUM*/ SET_FLAG(cur_beamform_cap, GET_HT_CAP_TXBF_COMP_STEERING_NUM_ANTENNAS(pIE->data) << 4); } phtpriv->beamform_cap = cur_beamform_cap; if (cur_beamform_cap) { DBG_871X("AP HT Beamforming Cap = 0x%02X\n", cur_beamform_cap); } #endif /*CONFIG_BEAMFORMING*/ } else { /*WIFI_STATION_STATEorI_ADHOC_STATE or WIFI_ADHOC_MASTER_STATE*/ // Config LDPC Coding Capability if (TEST_FLAG(phtpriv->ldpc_cap, LDPC_HT_ENABLE_TX) && GET_HT_CAP_ELE_LDPC_CAP(pIE->data)) { SET_FLAG(cur_ldpc_cap, (LDPC_HT_ENABLE_TX | LDPC_HT_CAP_TX)); DBG_871X("Enable HT Tx LDPC!\n"); } phtpriv->ldpc_cap = cur_ldpc_cap; // Config STBC setting if (TEST_FLAG(phtpriv->stbc_cap, STBC_HT_ENABLE_TX) && GET_HT_CAP_ELE_RX_STBC(pIE->data)) { SET_FLAG(cur_stbc_cap, (STBC_HT_ENABLE_TX | STBC_HT_CAP_TX) ); DBG_871X("Enable HT Tx STBC!\n"); } phtpriv->stbc_cap = cur_stbc_cap; #ifdef CONFIG_BEAMFORMING // Config Tx beamforming setting if (TEST_FLAG(phtpriv->beamform_cap, BEAMFORMING_HT_BEAMFORMEE_ENABLE) && GET_HT_CAP_TXBF_EXPLICIT_COMP_STEERING_CAP(pIE->data)) { SET_FLAG(cur_beamform_cap, BEAMFORMING_HT_BEAMFORMER_ENABLE); /* Shift to BEAMFORMING_HT_BEAMFORMEE_CHNL_EST_CAP*/ SET_FLAG(cur_beamform_cap, GET_HT_CAP_TXBF_CHNL_ESTIMATION_NUM_ANTENNAS(pIE->data) << 6); } if (TEST_FLAG(phtpriv->beamform_cap, BEAMFORMING_HT_BEAMFORMER_ENABLE) && GET_HT_CAP_TXBF_EXPLICIT_COMP_FEEDBACK_CAP(pIE->data)) { SET_FLAG(cur_beamform_cap, BEAMFORMING_HT_BEAMFORMEE_ENABLE); /* Shift to BEAMFORMING_HT_BEAMFORMER_STEER_NUM*/ SET_FLAG(cur_beamform_cap, GET_HT_CAP_TXBF_COMP_STEERING_NUM_ANTENNAS(pIE->data) << 4); } phtpriv->beamform_cap = cur_beamform_cap; if (cur_beamform_cap) { DBG_871X("Client HT Beamforming Cap = 0x%02X\n", cur_beamform_cap); } #endif /*CONFIG_BEAMFORMING*/ } #endif //CONFIG_80211N_HT } void HT_info_handler(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE) { #ifdef CONFIG_80211N_HT struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); struct mlme_priv *pmlmepriv = &padapter->mlmepriv; struct ht_priv *phtpriv = &pmlmepriv->htpriv; if(pIE==NULL) return; if(phtpriv->ht_option == _FALSE) return; if(pIE->Length > sizeof(struct HT_info_element)) return; pmlmeinfo->HT_info_enable = 1; _rtw_memcpy(&(pmlmeinfo->HT_info), pIE->data, pIE->Length); #endif //CONFIG_80211N_HT return; } void HTOnAssocRsp(_adapter *padapter) { unsigned char max_AMPDU_len; unsigned char min_MPDU_spacing; //struct registry_priv *pregpriv = &padapter->registrypriv; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); DBG_871X("%s\n", __FUNCTION__); if ((pmlmeinfo->HT_info_enable) && (pmlmeinfo->HT_caps_enable)) { pmlmeinfo->HT_enable = 1; } else { pmlmeinfo->HT_enable = 0; //set_channel_bwmode(padapter, pmlmeext->cur_channel, pmlmeext->cur_ch_offset, pmlmeext->cur_bwmode); return; } //handle A-MPDU parameter field /* AMPDU_para [1:0]:Max AMPDU Len => 0:8k , 1:16k, 2:32k, 3:64k AMPDU_para [4:2]:Min MPDU Start Spacing */ max_AMPDU_len = pmlmeinfo->HT_caps.u.HT_cap_element.AMPDU_para & 0x03; min_MPDU_spacing = (pmlmeinfo->HT_caps.u.HT_cap_element.AMPDU_para & 0x1c) >> 2; rtw_hal_set_hwreg(padapter, HW_VAR_AMPDU_MIN_SPACE, (u8 *)(&min_MPDU_spacing)); rtw_hal_set_hwreg(padapter, HW_VAR_AMPDU_FACTOR, (u8 *)(&max_AMPDU_len)); #if 0 //move to rtw_update_ht_cap() if ((pregpriv->bw_mode > 0) && (pmlmeinfo->HT_caps.u.HT_cap_element.HT_caps_info & BIT(1)) && (pmlmeinfo->HT_info.infos[0] & BIT(2))) { //switch to the 40M Hz mode accoring to the AP pmlmeext->cur_bwmode = CHANNEL_WIDTH_40; switch ((pmlmeinfo->HT_info.infos[0] & 0x3)) { case EXTCHNL_OFFSET_UPPER: pmlmeext->cur_ch_offset = HAL_PRIME_CHNL_OFFSET_LOWER; break; case EXTCHNL_OFFSET_LOWER: pmlmeext->cur_ch_offset = HAL_PRIME_CHNL_OFFSET_UPPER; break; default: pmlmeext->cur_ch_offset = HAL_PRIME_CHNL_OFFSET_DONT_CARE; break; } //SelectChannel(padapter, pmlmeext->cur_channel, pmlmeext->cur_ch_offset); } #endif //set_channel_bwmode(padapter, pmlmeext->cur_channel, pmlmeext->cur_ch_offset, pmlmeext->cur_bwmode); #if 0 //move to rtw_update_ht_cap() // // Config SM Power Save setting // pmlmeinfo->SM_PS = (pmlmeinfo->HT_caps.u.HT_cap_element.HT_caps_info & 0x0C) >> 2; if(pmlmeinfo->SM_PS == WLAN_HT_CAP_SM_PS_STATIC) { /*u8 i; //update the MCS rates for (i = 0; i < 16; i++) { pmlmeinfo->HT_caps.HT_cap_element.MCS_rate[i] &= MCS_rate_1R[i]; }*/ DBG_871X("%s(): WLAN_HT_CAP_SM_PS_STATIC\n",__FUNCTION__); } // // Config current HT Protection mode. // pmlmeinfo->HT_protection = pmlmeinfo->HT_info.infos[1] & 0x3; #endif } void ERP_IE_handler(_adapter *padapter, PNDIS_802_11_VARIABLE_IEs pIE) { struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); if(pIE->Length>1) return; pmlmeinfo->ERP_enable = 1; _rtw_memcpy(&(pmlmeinfo->ERP_IE), pIE->data, pIE->Length); } void VCS_update(_adapter *padapter, struct sta_info *psta) { struct registry_priv *pregpriv = &padapter->registrypriv; struct mlme_priv *pmlmepriv = &padapter->mlmepriv; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); switch (pregpriv->vrtl_carrier_sense)/* 0:off 1:on 2:auto */ { case 0: //off psta->rtsen = 0; psta->cts2self = 0; break; case 1: //on if (pregpriv->vcs_type == 1) /* 1:RTS/CTS 2:CTS to self */ { psta->rtsen = 1; psta->cts2self = 0; } else { psta->rtsen = 0; psta->cts2self = 1; } break; case 2: //auto default: if (((pmlmeinfo->ERP_enable) && (pmlmeinfo->ERP_IE & BIT(1))) /*||(pmlmepriv->ht_op_mode & HT_INFO_OPERATION_MODE_NON_GF_DEVS_PRESENT)*/ ) { if (pregpriv->vcs_type == 1) { psta->rtsen = 1; psta->cts2self = 0; } else { psta->rtsen = 0; psta->cts2self = 1; } } else { psta->rtsen = 0; psta->cts2self = 0; } break; } } void update_ldpc_stbc_cap(struct sta_info *psta) { #ifdef CONFIG_80211N_HT #ifdef CONFIG_80211AC_VHT if (psta->vhtpriv.vht_option) { if(TEST_FLAG(psta->vhtpriv.ldpc_cap, LDPC_VHT_ENABLE_TX)) psta->ldpc = 1; if(TEST_FLAG(psta->vhtpriv.stbc_cap, STBC_VHT_ENABLE_TX)) psta->stbc = 1; } else #endif //CONFIG_80211AC_VHT if (psta->htpriv.ht_option) { if(TEST_FLAG(psta->htpriv.ldpc_cap, LDPC_HT_ENABLE_TX)) psta->ldpc = 1; if(TEST_FLAG(psta->htpriv.stbc_cap, STBC_HT_ENABLE_TX)) psta->stbc = 1; } else { psta->ldpc = 0; psta->stbc = 0; } #endif //CONFIG_80211N_HT } /* * rtw_get_bcn_keys: get beacon keys from recv frame * * TODO: * WLAN_EID_COUNTRY * WLAN_EID_ERP_INFO * WLAN_EID_CHANNEL_SWITCH * WLAN_EID_PWR_CONSTRAINT */ int rtw_get_bcn_keys(ADAPTER *Adapter, u8 *pframe, u32 packet_len, struct beacon_keys *recv_beacon) { int left; u16 capability; unsigned char *pos; struct rtw_ieee802_11_elems elems; struct rtw_ieee80211_ht_cap *pht_cap = NULL; struct HT_info_element *pht_info = NULL; _rtw_memset(recv_beacon, 0, sizeof(*recv_beacon)); /* checking capabilities */ capability = le16_to_cpu(*(unsigned short *)(pframe + WLAN_HDR_A3_LEN + 10)); /* checking IEs */ left = packet_len - sizeof(struct rtw_ieee80211_hdr_3addr) - _BEACON_IE_OFFSET_; pos = pframe + sizeof(struct rtw_ieee80211_hdr_3addr) + _BEACON_IE_OFFSET_; if (rtw_ieee802_11_parse_elems(pos, left, &elems, 1) == ParseFailed) return _FALSE; /* check bw and channel offset */ if (elems.ht_capabilities) { if (elems.ht_capabilities_len != sizeof(*pht_cap)) return _FALSE; pht_cap = (struct rtw_ieee80211_ht_cap *) elems.ht_capabilities; recv_beacon->ht_cap_info = pht_cap->cap_info; } if (elems.ht_operation) { if (elems.ht_operation_len != sizeof(*pht_info)) return _FALSE; pht_info = (struct HT_info_element *) elems.ht_operation; recv_beacon->ht_info_infos_0_sco = pht_info->infos[0] & 0x03; } /* Checking for channel */ if (elems.ds_params && elems.ds_params_len == sizeof(recv_beacon->bcn_channel)) _rtw_memcpy(&recv_beacon->bcn_channel, elems.ds_params, sizeof(recv_beacon->bcn_channel)); else if (pht_info) /* In 5G, some ap do not have DSSET IE checking HT info for channel */ recv_beacon->bcn_channel = pht_info->primary_channel; else { /* we don't find channel IE, so don't check it */ //DBG_871X("Oops: %s we don't find channel IE, so don't check it \n", __func__); recv_beacon->bcn_channel = Adapter->mlmeextpriv.cur_channel; } /* checking SSID */ if (elems.ssid) { if (elems.ssid_len > sizeof(recv_beacon->ssid)) return _FALSE; _rtw_memcpy(recv_beacon->ssid, elems.ssid, elems.ssid_len); recv_beacon->ssid_len = elems.ssid_len; } else; // means hidden ssid /* checking RSN first */ if (elems.rsn_ie && elems.rsn_ie_len) { recv_beacon->encryp_protocol = ENCRYP_PROTOCOL_WPA2; rtw_parse_wpa2_ie(elems.rsn_ie - 2, elems.rsn_ie_len + 2, &recv_beacon->group_cipher, &recv_beacon->pairwise_cipher, &recv_beacon->is_8021x); } /* checking WPA secon */ else if (elems.wpa_ie && elems.wpa_ie_len) { recv_beacon->encryp_protocol = ENCRYP_PROTOCOL_WPA; rtw_parse_wpa_ie(elems.wpa_ie - 2, elems.wpa_ie_len + 2, &recv_beacon->group_cipher, &recv_beacon->pairwise_cipher, &recv_beacon->is_8021x); } else if (capability & BIT(4)) { recv_beacon->encryp_protocol = ENCRYP_PROTOCOL_WEP; } return _TRUE; } void rtw_dump_bcn_keys(struct beacon_keys *recv_beacon) { int i; char *p; u8 ssid[IW_ESSID_MAX_SIZE + 1]; _rtw_memcpy(ssid, recv_beacon->ssid, recv_beacon->ssid_len); ssid[recv_beacon->ssid_len] = '\0'; DBG_871X("%s: ssid = %s\n", __func__, ssid); DBG_871X("%s: channel = %x\n", __func__, recv_beacon->bcn_channel); DBG_871X("%s: ht_cap = %x\n", __func__, recv_beacon->ht_cap_info); DBG_871X("%s: ht_info_infos_0_sco = %x\n", __func__, recv_beacon->ht_info_infos_0_sco); DBG_871X("%s: sec=%d, group = %x, pair = %x, 8021X = %x\n", __func__, recv_beacon->encryp_protocol, recv_beacon->group_cipher, recv_beacon->pairwise_cipher, recv_beacon->is_8021x); } int rtw_check_bcn_info(ADAPTER *Adapter, u8 *pframe, u32 packet_len) { #if 0 unsigned int len; unsigned char *p; unsigned short val16, subtype; struct wlan_network *cur_network = &(Adapter->mlmepriv.cur_network); //u8 wpa_ie[255],rsn_ie[255]; u16 wpa_len=0,rsn_len=0; u8 encryp_protocol = 0; WLAN_BSSID_EX *bssid; int group_cipher = 0, pairwise_cipher = 0, is_8021x = 0; unsigned char *pbuf; u32 wpa_ielen = 0; u8 *pbssid = GetAddr3Ptr(pframe); u32 hidden_ssid = 0; u8 cur_network_type, network_type=0; struct HT_info_element *pht_info = NULL; struct rtw_ieee80211_ht_cap *pht_cap = NULL; u32 bcn_channel; unsigned short ht_cap_info; unsigned char ht_info_infos_0; #endif unsigned int len; u8 *pbssid = GetAddr3Ptr(pframe); struct mlme_priv *pmlmepriv = &Adapter->mlmepriv; struct wlan_network *cur_network = &(Adapter->mlmepriv.cur_network); struct beacon_keys recv_beacon; if (is_client_associated_to_ap(Adapter) == _FALSE) return _TRUE; len = packet_len - sizeof(struct rtw_ieee80211_hdr_3addr); if (len > MAX_IE_SZ) { DBG_871X("%s IE too long for survey event\n", __func__); return _FAIL; } if (_rtw_memcmp(cur_network->network.MacAddress, pbssid, 6) == _FALSE) { DBG_871X("Oops: rtw_check_network_encrypt linked but recv other bssid bcn\n" MAC_FMT MAC_FMT, MAC_ARG(pbssid), MAC_ARG(cur_network->network.MacAddress)); return _TRUE; } if (rtw_get_bcn_keys(Adapter, pframe, packet_len, &recv_beacon) == _FALSE) return _TRUE; // parsing failed => broken IE // don't care hidden ssid, use current beacon ssid directly if (recv_beacon.ssid_len == 0) { _rtw_memcpy(recv_beacon.ssid, pmlmepriv->cur_beacon_keys.ssid, pmlmepriv->cur_beacon_keys.ssid_len); recv_beacon.ssid_len = pmlmepriv->cur_beacon_keys.ssid_len; } if (_rtw_memcmp(&recv_beacon, &pmlmepriv->cur_beacon_keys, sizeof(recv_beacon)) == _TRUE) { pmlmepriv->new_beacon_cnts = 0; } else if ((pmlmepriv->new_beacon_cnts == 0) || _rtw_memcmp(&recv_beacon, &pmlmepriv->new_beacon_keys, sizeof(recv_beacon)) == _FALSE) { DBG_871X_LEVEL(_drv_err_, "%s: start new beacon (seq=%d)\n", __func__, GetSequence(pframe)); if (pmlmepriv->new_beacon_cnts == 0) { DBG_871X_LEVEL(_drv_err_, "%s: cur beacon key\n", __func__); DBG_871X_EXP(_drv_err_, rtw_dump_bcn_keys(&pmlmepriv->cur_beacon_keys)); } DBG_871X_LEVEL(_drv_err_, "%s: new beacon key\n", __func__); DBG_871X_EXP(_drv_err_, rtw_dump_bcn_keys(&recv_beacon)); memcpy(&pmlmepriv->new_beacon_keys, &recv_beacon, sizeof(recv_beacon)); pmlmepriv->new_beacon_cnts = 1; } else { DBG_871X_LEVEL(_drv_err_, "%s: new beacon again (seq=%d)\n", __func__, GetSequence(pframe)); pmlmepriv->new_beacon_cnts++; } // if counter >= max, it means beacon is changed really if (pmlmepriv->new_beacon_cnts >= new_bcn_max) { DBG_871X_LEVEL(_drv_err_, "%s: new beacon occur!!\n", __func__); // check bw mode change only? pmlmepriv->cur_beacon_keys.ht_cap_info = recv_beacon.ht_cap_info; pmlmepriv->cur_beacon_keys.ht_info_infos_0_sco = recv_beacon.ht_info_infos_0_sco; if (_rtw_memcmp(&recv_beacon, &pmlmepriv->cur_beacon_keys, sizeof(recv_beacon)) == _FALSE) { // beacon is changed, have to do disconnect/connect return _FAIL; } DBG_871X("%s bw mode change\n", __func__); DBG_871X("%s bcn now: ht_cap_info:%x ht_info_infos_0:%x\n", __func__, cur_network->BcnInfo.ht_cap_info, cur_network->BcnInfo.ht_info_infos_0); cur_network->BcnInfo.ht_cap_info = recv_beacon.ht_cap_info; cur_network->BcnInfo.ht_info_infos_0 = (cur_network->BcnInfo.ht_info_infos_0 & (~0x03)) | recv_beacon.ht_info_infos_0_sco; DBG_871X("%s bcn link: ht_cap_info:%x ht_info_infos_0:%x\n", __func__, cur_network->BcnInfo.ht_cap_info, cur_network->BcnInfo.ht_info_infos_0); memcpy(&pmlmepriv->cur_beacon_keys, &recv_beacon, sizeof(recv_beacon)); pmlmepriv->new_beacon_cnts = 0; } return _SUCCESS; #if 0 bssid = (WLAN_BSSID_EX *)rtw_zmalloc(sizeof(WLAN_BSSID_EX)); if (bssid == NULL) { DBG_871X("%s rtw_zmalloc fail !!!\n", __func__); return _TRUE; } if ((pmlmepriv->timeBcnInfoChkStart != 0) && (rtw_get_passing_time_ms(pmlmepriv->timeBcnInfoChkStart) > DISCONNECT_BY_CHK_BCN_FAIL_OBSERV_PERIOD_IN_MS)) { pmlmepriv->timeBcnInfoChkStart = 0; pmlmepriv->NumOfBcnInfoChkFail = 0; } subtype = GetFrameSubType(pframe) >> 4; if(subtype==WIFI_BEACON) bssid->Reserved[0] = 1; bssid->Length = sizeof(WLAN_BSSID_EX) - MAX_IE_SZ + len; /* below is to copy the information element */ bssid->IELength = len; _rtw_memcpy(bssid->IEs, (pframe + sizeof(struct rtw_ieee80211_hdr_3addr)), bssid->IELength); /* check bw and channel offset */ /* parsing HT_CAP_IE */ p = rtw_get_ie(bssid->IEs + _FIXED_IE_LENGTH_, _HT_CAPABILITY_IE_, &len, bssid->IELength - _FIXED_IE_LENGTH_); if(p && len>0) { pht_cap = (struct rtw_ieee80211_ht_cap *)(p + 2); ht_cap_info = pht_cap->cap_info; } else { ht_cap_info = 0; } /* parsing HT_INFO_IE */ p = rtw_get_ie(bssid->IEs + _FIXED_IE_LENGTH_, _HT_ADD_INFO_IE_, &len, bssid->IELength - _FIXED_IE_LENGTH_); if(p && len>0) { pht_info = (struct HT_info_element *)(p + 2); ht_info_infos_0 = pht_info->infos[0]; } else { ht_info_infos_0 = 0; } if (ht_cap_info != cur_network->BcnInfo.ht_cap_info || ((ht_info_infos_0&0x03) != (cur_network->BcnInfo.ht_info_infos_0&0x03))) { DBG_871X("%s bcn now: ht_cap_info:%x ht_info_infos_0:%x\n", __func__, ht_cap_info, ht_info_infos_0); DBG_871X("%s bcn link: ht_cap_info:%x ht_info_infos_0:%x\n", __func__, cur_network->BcnInfo.ht_cap_info, cur_network->BcnInfo.ht_info_infos_0); DBG_871X("%s bw mode change\n", __func__); { //bcn_info_update cur_network->BcnInfo.ht_cap_info = ht_cap_info; cur_network->BcnInfo.ht_info_infos_0 = ht_info_infos_0; //to do : need to check that whether modify related register of BB or not } //goto _mismatch; } /* Checking for channel */ p = rtw_get_ie(bssid->IEs + _FIXED_IE_LENGTH_, _DSSET_IE_, &len, bssid->IELength - _FIXED_IE_LENGTH_); if (p) { bcn_channel = *(p + 2); } else {/* In 5G, some ap do not have DSSET IE checking HT info for channel */ rtw_get_ie(bssid->IEs + _FIXED_IE_LENGTH_, _HT_ADD_INFO_IE_, &len, bssid->IELength - _FIXED_IE_LENGTH_); if(pht_info) { bcn_channel = pht_info->primary_channel; } else { /* we don't find channel IE, so don't check it */ //DBG_871X("Oops: %s we don't find channel IE, so don't check it \n", __func__); bcn_channel = Adapter->mlmeextpriv.cur_channel; } } if (bcn_channel != Adapter->mlmeextpriv.cur_channel) { DBG_871X("%s beacon channel:%d cur channel:%d disconnect\n", __func__, bcn_channel, Adapter->mlmeextpriv.cur_channel); goto _mismatch; } /* checking SSID */ if ((p = rtw_get_ie(bssid->IEs + _FIXED_IE_LENGTH_, _SSID_IE_, &len, bssid->IELength - _FIXED_IE_LENGTH_)) == NULL) { DBG_871X("%s marc: cannot find SSID for survey event\n", __func__); hidden_ssid = _TRUE; } else { hidden_ssid = _FALSE; } if((NULL != p) && (_FALSE == hidden_ssid && (*(p + 1)))) { _rtw_memcpy(bssid->Ssid.Ssid, (p + 2), *(p + 1)); bssid->Ssid.SsidLength = *(p + 1); } else { bssid->Ssid.SsidLength = 0; bssid->Ssid.Ssid[0] = '\0'; } RT_TRACE(_module_rtl871x_mlme_c_,_drv_info_,("%s bssid.Ssid.Ssid:%s bssid.Ssid.SsidLength:%d " "cur_network->network.Ssid.Ssid:%s len:%d\n", __func__, bssid->Ssid.Ssid, bssid->Ssid.SsidLength, cur_network->network.Ssid.Ssid, cur_network->network.Ssid.SsidLength)); if (_rtw_memcmp(bssid->Ssid.Ssid, cur_network->network.Ssid.Ssid, 32) == _FALSE || bssid->Ssid.SsidLength != cur_network->network.Ssid.SsidLength) { if (bssid->Ssid.Ssid[0] != '\0' && bssid->Ssid.SsidLength != 0) { /* not hidden ssid */ DBG_871X("%s(), SSID is not match\n", __func__); goto _mismatch; } } /* check encryption info */ val16 = rtw_get_capability((WLAN_BSSID_EX *)bssid); if (val16 & BIT(4)) bssid->Privacy = 1; else bssid->Privacy = 0; RT_TRACE(_module_rtl871x_mlme_c_,_drv_info_, ("%s(): cur_network->network.Privacy is %d, bssid.Privacy is %d\n", __func__, cur_network->network.Privacy,bssid->Privacy)); if (cur_network->network.Privacy != bssid->Privacy) { DBG_871X("%s(), privacy is not match\n",__func__); goto _mismatch; } rtw_get_sec_ie(bssid->IEs, bssid->IELength, NULL,&rsn_len,NULL,&wpa_len); if (rsn_len > 0) { encryp_protocol = ENCRYP_PROTOCOL_WPA2; } else if (wpa_len > 0) { encryp_protocol = ENCRYP_PROTOCOL_WPA; } else { if (bssid->Privacy) encryp_protocol = ENCRYP_PROTOCOL_WEP; } if (cur_network->BcnInfo.encryp_protocol != encryp_protocol) { DBG_871X("%s(): enctyp is not match\n",__func__); goto _mismatch; } if (encryp_protocol == ENCRYP_PROTOCOL_WPA || encryp_protocol == ENCRYP_PROTOCOL_WPA2) { pbuf = rtw_get_wpa_ie(&bssid->IEs[12], &wpa_ielen, bssid->IELength-12); if(pbuf && (wpa_ielen>0)) { if (_SUCCESS == rtw_parse_wpa_ie(pbuf, wpa_ielen+2, &group_cipher, &pairwise_cipher, &is_8021x)) { RT_TRACE(_module_rtl871x_mlme_c_,_drv_info_, ("%s pnetwork->pairwise_cipher: %d, group_cipher is %d, is_8021x is %d\n", __func__, pairwise_cipher, group_cipher, is_8021x)); } } else { pbuf = rtw_get_wpa2_ie(&bssid->IEs[12], &wpa_ielen, bssid->IELength-12); if(pbuf && (wpa_ielen>0)) { if (_SUCCESS == rtw_parse_wpa2_ie(pbuf, wpa_ielen+2, &group_cipher, &pairwise_cipher, &is_8021x)) { RT_TRACE(_module_rtl871x_mlme_c_,_drv_info_, ("%s pnetwork->pairwise_cipher: %d, pnetwork->group_cipher is %d, is_802x is %d\n", __func__, pairwise_cipher, group_cipher, is_8021x)); } } } RT_TRACE(_module_rtl871x_mlme_c_,_drv_err_, ("%s cur_network->group_cipher is %d: %d\n",__func__, cur_network->BcnInfo.group_cipher, group_cipher)); if (pairwise_cipher != cur_network->BcnInfo.pairwise_cipher || group_cipher != cur_network->BcnInfo.group_cipher) { DBG_871X("%s pairwise_cipher(%x:%x) or group_cipher(%x:%x) is not match\n",__func__, pairwise_cipher, cur_network->BcnInfo.pairwise_cipher, group_cipher, cur_network->BcnInfo.group_cipher); goto _mismatch; } if (is_8021x != cur_network->BcnInfo.is_8021x) { DBG_871X("%s authentication is not match\n", __func__); goto _mismatch; } } rtw_mfree((u8 *)bssid, sizeof(WLAN_BSSID_EX)); return _SUCCESS; _mismatch: rtw_mfree((u8 *)bssid, sizeof(WLAN_BSSID_EX)); if (pmlmepriv->NumOfBcnInfoChkFail == 0) { pmlmepriv->timeBcnInfoChkStart = rtw_get_current_time(); } pmlmepriv->NumOfBcnInfoChkFail++; DBG_871X("%s by "ADPT_FMT" - NumOfChkFail = %d (SeqNum of this Beacon frame = %d).\n", __func__, ADPT_ARG(Adapter), pmlmepriv->NumOfBcnInfoChkFail, GetSequence(pframe)); if ((pmlmepriv->timeBcnInfoChkStart != 0) && (rtw_get_passing_time_ms(pmlmepriv->timeBcnInfoChkStart) <= DISCONNECT_BY_CHK_BCN_FAIL_OBSERV_PERIOD_IN_MS) && (pmlmepriv->NumOfBcnInfoChkFail >= DISCONNECT_BY_CHK_BCN_FAIL_THRESHOLD)) { DBG_871X("%s by "ADPT_FMT" - NumOfChkFail = %d >= threshold : %d (in %d ms), return FAIL.\n", __func__, ADPT_ARG(Adapter), pmlmepriv->NumOfBcnInfoChkFail, DISCONNECT_BY_CHK_BCN_FAIL_THRESHOLD, rtw_get_passing_time_ms(pmlmepriv->timeBcnInfoChkStart)); pmlmepriv->timeBcnInfoChkStart = 0; pmlmepriv->NumOfBcnInfoChkFail = 0; return _FAIL; } return _SUCCESS; #endif } void update_beacon_info(_adapter *padapter, u8 *pframe, uint pkt_len, struct sta_info *psta) { unsigned int i; unsigned int len; PNDIS_802_11_VARIABLE_IEs pIE; #ifdef CONFIG_TDLS struct tdls_info *ptdlsinfo = &padapter->tdlsinfo; u8 tdls_prohibited[] = { 0x00, 0x00, 0x00, 0x00, 0x10 }; //bit(38): TDLS_prohibited #endif //CONFIG_TDLS len = pkt_len - (_BEACON_IE_OFFSET_ + WLAN_HDR_A3_LEN); for (i = 0; i < len;) { pIE = (PNDIS_802_11_VARIABLE_IEs)(pframe + (_BEACON_IE_OFFSET_ + WLAN_HDR_A3_LEN) + i); switch (pIE->ElementID) { case _VENDOR_SPECIFIC_IE_: //to update WMM paramter set while receiving beacon if (_rtw_memcmp(pIE->data, WMM_PARA_OUI, 6) && pIE->Length == WLAN_WMM_LEN) //WMM { (WMM_param_handler(padapter, pIE))? report_wmm_edca_update(padapter): 0; } break; case _HT_EXTRA_INFO_IE_: //HT info //HT_info_handler(padapter, pIE); bwmode_update_check(padapter, pIE); break; #ifdef CONFIG_80211AC_VHT case EID_OpModeNotification: rtw_process_vht_op_mode_notify(padapter, pIE->data, psta); break; #endif //CONFIG_80211AC_VHT case _ERPINFO_IE_: ERP_IE_handler(padapter, pIE); VCS_update(padapter, psta); break; #ifdef CONFIG_TDLS case _EXT_CAP_IE_: if( check_ap_tdls_prohibited(pIE->data, pIE->Length) == _TRUE ) ptdlsinfo->ap_prohibited = _TRUE; if (check_ap_tdls_ch_switching_prohibited(pIE->data, pIE->Length) == _TRUE) ptdlsinfo->ch_switch_prohibited = _TRUE; break; #endif //CONFIG_TDLS default: break; } i += (pIE->Length + 2); } } #ifdef CONFIG_DFS void process_csa_ie(_adapter *padapter, u8 *pframe, uint pkt_len) { unsigned int i; unsigned int len; PNDIS_802_11_VARIABLE_IEs pIE; u8 new_ch_no = 0; if(padapter->mlmepriv.handle_dfs == _TRUE ) return; len = pkt_len - (_BEACON_IE_OFFSET_ + WLAN_HDR_A3_LEN); for (i = 0; i < len;) { pIE = (PNDIS_802_11_VARIABLE_IEs)(pframe + (_BEACON_IE_OFFSET_ + WLAN_HDR_A3_LEN) + i); switch (pIE->ElementID) { case _CH_SWTICH_ANNOUNCE_: padapter->mlmepriv.handle_dfs = _TRUE; _rtw_memcpy(&new_ch_no, pIE->data+1, 1); rtw_set_csa_cmd(padapter, new_ch_no); break; default: break; } i += (pIE->Length + 2); } } #endif //CONFIG_DFS unsigned int is_ap_in_tkip(_adapter *padapter) { u32 i; PNDIS_802_11_VARIABLE_IEs pIE; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); WLAN_BSSID_EX *cur_network = &(pmlmeinfo->network); if (rtw_get_capability((WLAN_BSSID_EX *)cur_network) & WLAN_CAPABILITY_PRIVACY) { for (i = sizeof(NDIS_802_11_FIXED_IEs); i < pmlmeinfo->network.IELength;) { pIE = (PNDIS_802_11_VARIABLE_IEs)(pmlmeinfo->network.IEs + i); switch (pIE->ElementID) { case _VENDOR_SPECIFIC_IE_: if ((_rtw_memcmp(pIE->data, RTW_WPA_OUI, 4)) && (_rtw_memcmp((pIE->data + 12), WPA_TKIP_CIPHER, 4))) { return _TRUE; } break; case _RSN_IE_2_: if (_rtw_memcmp((pIE->data + 8), RSN_TKIP_CIPHER, 4)) { return _TRUE; } default: break; } i += (pIE->Length + 2); } return _FALSE; } else { return _FALSE; } } unsigned int should_forbid_n_rate(_adapter * padapter) { u32 i; PNDIS_802_11_VARIABLE_IEs pIE; struct mlme_priv *pmlmepriv = &padapter->mlmepriv; WLAN_BSSID_EX *cur_network = &pmlmepriv->cur_network.network; if (rtw_get_capability((WLAN_BSSID_EX *)cur_network) & WLAN_CAPABILITY_PRIVACY) { for (i = sizeof(NDIS_802_11_FIXED_IEs); i < cur_network->IELength;) { pIE = (PNDIS_802_11_VARIABLE_IEs)(cur_network->IEs + i); switch (pIE->ElementID) { case _VENDOR_SPECIFIC_IE_: if (_rtw_memcmp(pIE->data, RTW_WPA_OUI, 4) && ((_rtw_memcmp((pIE->data + 12), WPA_CIPHER_SUITE_CCMP, 4)) || (_rtw_memcmp((pIE->data + 16), WPA_CIPHER_SUITE_CCMP, 4)))) return _FALSE; break; case _RSN_IE_2_: if ((_rtw_memcmp((pIE->data + 8), RSN_CIPHER_SUITE_CCMP, 4)) || (_rtw_memcmp((pIE->data + 12), RSN_CIPHER_SUITE_CCMP, 4))) return _FALSE; default: break; } i += (pIE->Length + 2); } return _TRUE; } else { return _FALSE; } } unsigned int is_ap_in_wep(_adapter *padapter) { u32 i; PNDIS_802_11_VARIABLE_IEs pIE; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); WLAN_BSSID_EX *cur_network = &(pmlmeinfo->network); if (rtw_get_capability((WLAN_BSSID_EX *)cur_network) & WLAN_CAPABILITY_PRIVACY) { for (i = sizeof(NDIS_802_11_FIXED_IEs); i < pmlmeinfo->network.IELength;) { pIE = (PNDIS_802_11_VARIABLE_IEs)(pmlmeinfo->network.IEs + i); switch (pIE->ElementID) { case _VENDOR_SPECIFIC_IE_: if (_rtw_memcmp(pIE->data, RTW_WPA_OUI, 4)) return _FALSE; break; case _RSN_IE_2_: return _FALSE; default: break; } i += (pIE->Length + 2); } return _TRUE; } else { return _FALSE; } } int wifirate2_ratetbl_inx(unsigned char rate); int wifirate2_ratetbl_inx(unsigned char rate) { int inx = 0; rate = rate & 0x7f; switch (rate) { case 54*2: inx = 11; break; case 48*2: inx = 10; break; case 36*2: inx = 9; break; case 24*2: inx = 8; break; case 18*2: inx = 7; break; case 12*2: inx = 6; break; case 9*2: inx = 5; break; case 6*2: inx = 4; break; case 11*2: inx = 3; break; case 11: inx = 2; break; case 2*2: inx = 1; break; case 1*2: inx = 0; break; } return inx; } unsigned int update_basic_rate(unsigned char *ptn, unsigned int ptn_sz) { unsigned int i, num_of_rate; unsigned int mask = 0; num_of_rate = (ptn_sz > NumRates)? NumRates: ptn_sz; for (i = 0; i < num_of_rate; i++) { if ((*(ptn + i)) & 0x80) { mask |= 0x1 << wifirate2_ratetbl_inx(*(ptn + i)); } } return mask; } unsigned int update_supported_rate(unsigned char *ptn, unsigned int ptn_sz) { unsigned int i, num_of_rate; unsigned int mask = 0; num_of_rate = (ptn_sz > NumRates)? NumRates: ptn_sz; for (i = 0; i < num_of_rate; i++) { mask |= 0x1 << wifirate2_ratetbl_inx(*(ptn + i)); } return mask; } unsigned int update_MCS_rate(struct HT_caps_element *pHT_caps) { unsigned int mask = 0; mask = ((pHT_caps->u.HT_cap_element.MCS_rate[0] << 12) | (pHT_caps->u.HT_cap_element.MCS_rate[1] << 20)); return mask; } int support_short_GI(_adapter *padapter, struct HT_caps_element *pHT_caps, u8 bwmode) { unsigned char bit_offset; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); if (!(pmlmeinfo->HT_enable)) return _FAIL; bit_offset = (bwmode & CHANNEL_WIDTH_40)? 6: 5; if (pHT_caps->u.HT_cap_element.HT_caps_info & (0x1 << bit_offset)) { return _SUCCESS; } else { return _FAIL; } } unsigned char get_highest_rate_idx(u32 mask) { int i; unsigned char rate_idx=0; for(i=31; i>=0; i--) { if(mask & BIT(i)) { rate_idx = i; break; } } return rate_idx; } unsigned char get_highest_mcs_rate(struct HT_caps_element *pHT_caps); unsigned char get_highest_mcs_rate(struct HT_caps_element *pHT_caps) { int i, mcs_rate; mcs_rate = (pHT_caps->u.HT_cap_element.MCS_rate[0] | (pHT_caps->u.HT_cap_element.MCS_rate[1] << 8)); for (i = 15; i >= 0; i--) { if (mcs_rate & (0x1 << i)) { break; } } return i; } void Update_RA_Entry(_adapter *padapter, struct sta_info *psta) { rtw_hal_update_ra_mask(psta, 0); } void enable_rate_adaptive(_adapter *padapter, struct sta_info *psta); void enable_rate_adaptive(_adapter *padapter, struct sta_info *psta) { Update_RA_Entry(padapter, psta); } void set_sta_rate(_adapter *padapter, struct sta_info *psta) { //rate adaptive enable_rate_adaptive(padapter, psta); } // Update RRSR and Rate for USERATE void update_tx_basic_rate(_adapter *padapter, u8 wirelessmode) { NDIS_802_11_RATES_EX supported_rates; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; #ifdef CONFIG_P2P struct wifidirect_info* pwdinfo = &padapter->wdinfo; // Added by Albert 2011/03/22 // In the P2P mode, the driver should not support the b mode. // So, the Tx packet shouldn't use the CCK rate if(!rtw_p2p_chk_state(pwdinfo, P2P_STATE_NONE)) return; #endif //CONFIG_P2P #ifdef CONFIG_INTEL_WIDI if (padapter->mlmepriv.widi_state != INTEL_WIDI_STATE_NONE) return; #endif //CONFIG_INTEL_WIDI _rtw_memset(supported_rates, 0, NDIS_802_11_LENGTH_RATES_EX); //clear B mod if current channel is in 5G band, avoid tx cck rate in 5G band. if(pmlmeext->cur_channel > 14) wirelessmode &= ~(WIRELESS_11B); if ((wirelessmode & WIRELESS_11B) && (wirelessmode == WIRELESS_11B)) { _rtw_memcpy(supported_rates, rtw_basic_rate_cck, 4); } else if (wirelessmode & WIRELESS_11B) { _rtw_memcpy(supported_rates, rtw_basic_rate_mix, 7); } else { _rtw_memcpy(supported_rates, rtw_basic_rate_ofdm, 3); } if (wirelessmode & WIRELESS_11B) update_mgnt_tx_rate(padapter, IEEE80211_CCK_RATE_1MB); else update_mgnt_tx_rate(padapter, IEEE80211_OFDM_RATE_6MB); rtw_hal_set_hwreg(padapter, HW_VAR_BASIC_RATE, supported_rates); } unsigned char check_assoc_AP(u8 *pframe, uint len) { unsigned int i; PNDIS_802_11_VARIABLE_IEs pIE; for (i = sizeof(NDIS_802_11_FIXED_IEs); i < len;) { pIE = (PNDIS_802_11_VARIABLE_IEs)(pframe + i); switch (pIE->ElementID) { case _VENDOR_SPECIFIC_IE_: if ((_rtw_memcmp(pIE->data, ARTHEROS_OUI1, 3)) || (_rtw_memcmp(pIE->data, ARTHEROS_OUI2, 3))) { DBG_871X("link to Artheros AP\n"); return HT_IOT_PEER_ATHEROS; } else if ( (_rtw_memcmp(pIE->data, BROADCOM_OUI1, 3)) || (_rtw_memcmp(pIE->data, BROADCOM_OUI2, 3)) || (_rtw_memcmp(pIE->data, BROADCOM_OUI3, 3))) { DBG_871X("link to Broadcom AP\n"); return HT_IOT_PEER_BROADCOM; } else if (_rtw_memcmp(pIE->data, MARVELL_OUI, 3)) { DBG_871X("link to Marvell AP\n"); return HT_IOT_PEER_MARVELL; } else if (_rtw_memcmp(pIE->data, RALINK_OUI, 3)) { DBG_871X("link to Ralink AP\n"); return HT_IOT_PEER_RALINK; } else if (_rtw_memcmp(pIE->data, CISCO_OUI, 3)) { DBG_871X("link to Cisco AP\n"); return HT_IOT_PEER_CISCO; } else if (_rtw_memcmp(pIE->data, REALTEK_OUI, 3)) { u32 Vender = HT_IOT_PEER_REALTEK; if(pIE->Length >= 5) { if(pIE->data[4]==1) { //if(pIE->data[5] & RT_HT_CAP_USE_LONG_PREAMBLE) // bssDesc->BssHT.RT2RT_HT_Mode |= RT_HT_CAP_USE_LONG_PREAMBLE; if(pIE->data[5] & RT_HT_CAP_USE_92SE) { //bssDesc->BssHT.RT2RT_HT_Mode |= RT_HT_CAP_USE_92SE; Vender = HT_IOT_PEER_REALTEK_92SE; } } if(pIE->data[5] & RT_HT_CAP_USE_SOFTAP) Vender = HT_IOT_PEER_REALTEK_SOFTAP; if(pIE->data[4] == 2) { if(pIE->data[6] & RT_HT_CAP_USE_JAGUAR_BCUT) { Vender = HT_IOT_PEER_REALTEK_JAGUAR_BCUTAP; DBG_871X("link to Realtek JAGUAR_BCUTAP\n"); } if(pIE->data[6] & RT_HT_CAP_USE_JAGUAR_CCUT) { Vender = HT_IOT_PEER_REALTEK_JAGUAR_CCUTAP; DBG_871X("link to Realtek JAGUAR_CCUTAP\n"); } } } DBG_871X("link to Realtek AP\n"); return Vender; } else if (_rtw_memcmp(pIE->data, AIRGOCAP_OUI,3)) { DBG_871X("link to Airgo Cap\n"); return HT_IOT_PEER_AIRGO; } else { break; } default: break; } i += (pIE->Length + 2); } DBG_871X("link to new AP\n"); return HT_IOT_PEER_UNKNOWN; } void update_capinfo(PADAPTER Adapter, u16 updateCap) { struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); BOOLEAN ShortPreamble; // Check preamble mode, 2005.01.06, by rcnjko. // Mark to update preamble value forever, 2008.03.18 by lanhsin //if( pMgntInfo->RegPreambleMode == PREAMBLE_AUTO ) { if(updateCap & cShortPreamble) { // Short Preamble if(pmlmeinfo->preamble_mode != PREAMBLE_SHORT) // PREAMBLE_LONG or PREAMBLE_AUTO { ShortPreamble = _TRUE; pmlmeinfo->preamble_mode = PREAMBLE_SHORT; rtw_hal_set_hwreg( Adapter, HW_VAR_ACK_PREAMBLE, (u8 *)&ShortPreamble ); } } else { // Long Preamble if(pmlmeinfo->preamble_mode != PREAMBLE_LONG) // PREAMBLE_SHORT or PREAMBLE_AUTO { ShortPreamble = _FALSE; pmlmeinfo->preamble_mode = PREAMBLE_LONG; rtw_hal_set_hwreg( Adapter, HW_VAR_ACK_PREAMBLE, (u8 *)&ShortPreamble ); } } } if ( updateCap & cIBSS ) { //Filen: See 802.11-2007 p.91 pmlmeinfo->slotTime = NON_SHORT_SLOT_TIME; } else { //Filen: See 802.11-2007 p.90 if( pmlmeext->cur_wireless_mode & (WIRELESS_11_24N | WIRELESS_11A | WIRELESS_11_5N | WIRELESS_11AC)) { pmlmeinfo->slotTime = SHORT_SLOT_TIME; } else if( pmlmeext->cur_wireless_mode & (WIRELESS_11G)) { if( (updateCap & cShortSlotTime) /* && (!(pMgntInfo->pHTInfo->RT2RT_HT_Mode & RT_HT_CAP_USE_LONG_PREAMBLE)) */) { // Short Slot Time pmlmeinfo->slotTime = SHORT_SLOT_TIME; } else { // Long Slot Time pmlmeinfo->slotTime = NON_SHORT_SLOT_TIME; } } else { //B Mode pmlmeinfo->slotTime = NON_SHORT_SLOT_TIME; } } rtw_hal_set_hwreg( Adapter, HW_VAR_SLOT_TIME, &pmlmeinfo->slotTime ); } /* * set adapter.mlmeextpriv.mlmext_info.HT_enable * set adapter.mlmeextpriv.cur_wireless_mode * set SIFS register * set mgmt tx rate */ void update_wireless_mode(_adapter *padapter) { int ratelen, network_type = 0; u32 SIFS_Timer; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); WLAN_BSSID_EX *cur_network = &(pmlmeinfo->network); unsigned char *rate = cur_network->SupportedRates; #ifdef CONFIG_P2P struct wifidirect_info *pwdinfo= &(padapter->wdinfo); #endif //CONFIG_P2P ratelen = rtw_get_rateset_len(cur_network->SupportedRates); if ((pmlmeinfo->HT_info_enable) && (pmlmeinfo->HT_caps_enable)) { pmlmeinfo->HT_enable = 1; } if(pmlmeext->cur_channel > 14) { if (pmlmeinfo->VHT_enable) network_type = WIRELESS_11AC; else if (pmlmeinfo->HT_enable) network_type = WIRELESS_11_5N; network_type |= WIRELESS_11A; } else { if (pmlmeinfo->VHT_enable) network_type = WIRELESS_11AC; else if (pmlmeinfo->HT_enable) network_type = WIRELESS_11_24N; if ((cckratesonly_included(rate, ratelen)) == _TRUE) { network_type |= WIRELESS_11B; } else if((cckrates_included(rate, ratelen)) == _TRUE) { network_type |= WIRELESS_11BG; } else { network_type |= WIRELESS_11G; } } pmlmeext->cur_wireless_mode = network_type & padapter->registrypriv.wireless_mode; /* DBG_871X("network_type=%02x, padapter->registrypriv.wireless_mode=%02x\n", network_type, padapter->registrypriv.wireless_mode); */ /* if((pmlmeext->cur_wireless_mode==WIRELESS_11G) || (pmlmeext->cur_wireless_mode==WIRELESS_11BG))//WIRELESS_MODE_G) SIFS_Timer = 0x0a0a;//CCK else SIFS_Timer = 0x0e0e;//pHalData->SifsTime; //OFDM */ SIFS_Timer = 0x0a0a0808; //0x0808 -> for CCK, 0x0a0a -> for OFDM //change this value if having IOT issues. rtw_hal_set_hwreg( padapter, HW_VAR_RESP_SIFS, (u8 *)&SIFS_Timer); rtw_hal_set_hwreg( padapter, HW_VAR_WIRELESS_MODE, (u8 *)&(pmlmeext->cur_wireless_mode)); if ((pmlmeext->cur_wireless_mode & WIRELESS_11B) && rtw_p2p_chk_state(pwdinfo, P2P_STATE_NONE)) update_mgnt_tx_rate(padapter, IEEE80211_CCK_RATE_1MB); else update_mgnt_tx_rate(padapter, IEEE80211_OFDM_RATE_6MB); } void fire_write_MAC_cmd(_adapter *padapter, unsigned int addr, unsigned int value); void fire_write_MAC_cmd(_adapter *padapter, unsigned int addr, unsigned int value) { #if 0 struct cmd_obj *ph2c; struct reg_rw_parm *pwriteMacPara; struct cmd_priv *pcmdpriv = &(padapter->cmdpriv); if ((ph2c = (struct cmd_obj*)rtw_zmalloc(sizeof(struct cmd_obj))) == NULL) { return; } if ((pwriteMacPara = (struct reg_rw_parm*)rtw_malloc(sizeof(struct reg_rw_parm))) == NULL) { rtw_mfree((unsigned char *)ph2c, sizeof(struct cmd_obj)); return; } pwriteMacPara->rw = 1; pwriteMacPara->addr = addr; pwriteMacPara->value = value; init_h2fwcmd_w_parm_no_rsp(ph2c, pwriteMacPara, GEN_CMD_CODE(_Write_MACREG)); rtw_enqueue_cmd(pcmdpriv, ph2c); #endif } void update_sta_basic_rate(struct sta_info *psta, u8 wireless_mode) { if(IsSupportedTxCCK(wireless_mode)) { // Only B, B/G, and B/G/N AP could use CCK rate _rtw_memcpy(psta->bssrateset, rtw_basic_rate_cck, 4); psta->bssratelen = 4; } else { _rtw_memcpy(psta->bssrateset, rtw_basic_rate_ofdm, 3); psta->bssratelen = 3; } } int update_sta_support_rate(_adapter *padapter, u8* pvar_ie, uint var_ie_len, int cam_idx) { unsigned int ie_len; PNDIS_802_11_VARIABLE_IEs pIE; int supportRateNum = 0; struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv); struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); pIE = (PNDIS_802_11_VARIABLE_IEs)rtw_get_ie(pvar_ie, _SUPPORTEDRATES_IE_, &ie_len, var_ie_len); if (pIE == NULL) { return _FAIL; } _rtw_memcpy(pmlmeinfo->FW_sta_info[cam_idx].SupportedRates, pIE->data, ie_len); supportRateNum = ie_len; pIE = (PNDIS_802_11_VARIABLE_IEs)rtw_get_ie(pvar_ie, _EXT_SUPPORTEDRATES_IE_, &ie_len, var_ie_len); if (pIE) { _rtw_memcpy((pmlmeinfo->FW_sta_info[cam_idx].SupportedRates + supportRateNum), pIE->data, ie_len); } return _SUCCESS; } void process_addba_req(_adapter *padapter, u8 *paddba_req, u8 *addr) { struct sta_info *psta; u16 tid, start_seq, param; struct recv_reorder_ctrl *preorder_ctrl; struct sta_priv *pstapriv = &padapter->stapriv; struct ADDBA_request *preq = (struct ADDBA_request*)paddba_req; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); u8 size; psta = rtw_get_stainfo(pstapriv, addr); if (!psta) goto exit; start_seq = le16_to_cpu(preq->BA_starting_seqctrl) >> 4; param = le16_to_cpu(preq->BA_para_set); tid = (param>>2)&0x0f; preorder_ctrl = &psta->recvreorder_ctrl[tid]; #ifdef CONFIG_UPDATE_INDICATE_SEQ_WHILE_PROCESS_ADDBA_REQ preorder_ctrl->indicate_seq = start_seq; #ifdef DBG_RX_SEQ DBG_871X("DBG_RX_SEQ %s:%d IndicateSeq: %d, start_seq: %d\n", __func__, __LINE__, preorder_ctrl->indicate_seq, start_seq); #endif #else preorder_ctrl->indicate_seq = 0xffff; #endif preorder_ctrl->enable = rtw_rx_ampdu_is_accept(padapter); size = rtw_rx_ampdu_size(padapter); if (preorder_ctrl->enable == _TRUE) { preorder_ctrl->ampdu_size = size; issue_addba_rsp(padapter, addr, tid, 0, size); } else { issue_addba_rsp(padapter, addr, tid, 37, size); /* reject ADDBA Req */ } exit: return; } void update_TSF(struct mlme_ext_priv *pmlmeext, u8 *pframe, uint len) { u8* pIE; u32 *pbuf; pIE = pframe + sizeof(struct rtw_ieee80211_hdr_3addr); pbuf = (u32*)pIE; pmlmeext->TSFValue = le32_to_cpu(*(pbuf+1)); pmlmeext->TSFValue = pmlmeext->TSFValue << 32; pmlmeext->TSFValue |= le32_to_cpu(*pbuf); } void correct_TSF(_adapter *padapter, struct mlme_ext_priv *pmlmeext) { rtw_hal_set_hwreg(padapter, HW_VAR_CORRECT_TSF, 0); } void adaptive_early_32k(struct mlme_ext_priv *pmlmeext, u8 *pframe, uint len) { int i; u8* pIE; u32 *pbuf; u64 tsf=0; u32 delay_ms; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); pmlmeext->bcn_cnt++; pIE = pframe + sizeof(struct rtw_ieee80211_hdr_3addr); pbuf = (u32*)pIE; tsf = le32_to_cpu(*(pbuf+1)); tsf = tsf << 32; tsf |= le32_to_cpu(*pbuf); //DBG_871X("%s(): tsf_upper= 0x%08x, tsf_lower=0x%08x\n", __func__, (u32)(tsf>>32), (u32)tsf); //delay = (timestamp mod 1024*100)/1000 (unit: ms) //delay_ms = do_div(tsf, (pmlmeinfo->bcn_interval*1024))/1000; delay_ms = rtw_modular64(tsf, (pmlmeinfo->bcn_interval*1024)); delay_ms = delay_ms/1000; if(delay_ms >= 8) { pmlmeext->bcn_delay_cnt[8]++; //pmlmeext->bcn_delay_ratio[8] = (pmlmeext->bcn_delay_cnt[8] * 100) /pmlmeext->bcn_cnt; } else { pmlmeext->bcn_delay_cnt[delay_ms]++; //pmlmeext->bcn_delay_ratio[delay_ms] = (pmlmeext->bcn_delay_cnt[delay_ms] * 100) /pmlmeext->bcn_cnt; } /* DBG_871X("%s(): (a)bcn_cnt = %d\n", __func__, pmlmeext->bcn_cnt); for(i=0; i<9; i++) { DBG_871X("%s():bcn_delay_cnt[%d]=%d, bcn_delay_ratio[%d]=%d\n", __func__, i, pmlmeext->bcn_delay_cnt[i] , i, pmlmeext->bcn_delay_ratio[i]); } */ //dump for adaptive_early_32k if(pmlmeext->bcn_cnt > 100 && (pmlmeext->adaptive_tsf_done==_TRUE)) { u8 ratio_20_delay, ratio_80_delay; u8 DrvBcnEarly, DrvBcnTimeOut; ratio_20_delay = 0; ratio_80_delay = 0; DrvBcnEarly = 0xff; DrvBcnTimeOut = 0xff; DBG_871X("%s(): bcn_cnt = %d\n", __func__, pmlmeext->bcn_cnt); for(i=0; i<9; i++) { pmlmeext->bcn_delay_ratio[i] = (pmlmeext->bcn_delay_cnt[i] * 100) /pmlmeext->bcn_cnt; //DBG_871X("%s():bcn_delay_cnt[%d]=%d, bcn_delay_ratio[%d]=%d\n", __func__, i, // pmlmeext->bcn_delay_cnt[i] , i, pmlmeext->bcn_delay_ratio[i]); ratio_20_delay += pmlmeext->bcn_delay_ratio[i]; ratio_80_delay += pmlmeext->bcn_delay_ratio[i]; if(ratio_20_delay > 20 && DrvBcnEarly == 0xff) { DrvBcnEarly = i; //DBG_871X("%s(): DrvBcnEarly = %d\n", __func__, DrvBcnEarly); } if(ratio_80_delay > 80 && DrvBcnTimeOut == 0xff) { DrvBcnTimeOut = i; //DBG_871X("%s(): DrvBcnTimeOut = %d\n", __func__, DrvBcnTimeOut); } //reset adaptive_early_32k cnt pmlmeext->bcn_delay_cnt[i] = 0; pmlmeext->bcn_delay_ratio[i] = 0; } pmlmeext->DrvBcnEarly = DrvBcnEarly; pmlmeext->DrvBcnTimeOut = DrvBcnTimeOut; pmlmeext->bcn_cnt = 0; } } void beacon_timing_control(_adapter *padapter) { rtw_hal_bcn_related_reg_setting(padapter); } #define CONFIG_SHARED_BMC_MACID void dump_macid_map(void *sel, struct macid_bmp *map, u8 max_num) { DBG_871X_SEL_NL(sel, "0x%08x\n", map->m0); #if (MACID_NUM_SW_LIMIT > 32) if (max_num && max_num > 32) DBG_871X_SEL_NL(sel, "0x%08x\n", map->m1); #endif #if (MACID_NUM_SW_LIMIT > 64) if (max_num && max_num > 64) DBG_871X_SEL_NL(sel, "0x%08x\n", map->m2); #endif #if (MACID_NUM_SW_LIMIT > 96) if (max_num && max_num > 96) DBG_871X_SEL_NL(sel, "0x%08x\n", map->m3); #endif } inline bool rtw_macid_is_set(struct macid_bmp *map, u8 id) { if (id < 32) return (map->m0 & BIT(id)); #if (MACID_NUM_SW_LIMIT > 32) else if (id < 64) return (map->m1 & BIT(id-32)); #endif #if (MACID_NUM_SW_LIMIT > 64) else if (id < 96) return (map->m2 & BIT(id-64)); #endif #if (MACID_NUM_SW_LIMIT > 96) else if (id < 128) return (map->m3 & BIT(id-96)); #endif else rtw_warn_on(1); return 0; } inline void rtw_macid_map_set(struct macid_bmp *map, u8 id) { if (id < 32) map->m0 |= BIT(id); #if (MACID_NUM_SW_LIMIT > 32) else if (id < 64) map->m1 |= BIT(id-32); #endif #if (MACID_NUM_SW_LIMIT > 64) else if (id < 96) map->m2 |= BIT(id-64); #endif #if (MACID_NUM_SW_LIMIT > 96) else if (id < 128) map->m3 |= BIT(id-96); #endif else rtw_warn_on(1); } inline void rtw_macid_map_clr(struct macid_bmp *map, u8 id) { if (id < 32) map->m0 &= ~BIT(id); #if (MACID_NUM_SW_LIMIT > 32) else if (id < 64) map->m1 &= ~BIT(id-32); #endif #if (MACID_NUM_SW_LIMIT > 64) else if (id < 96) map->m2 &= ~BIT(id-64); #endif #if (MACID_NUM_SW_LIMIT > 96) else if (id < 128) map->m3 &= ~BIT(id-96); #endif else rtw_warn_on(1); } inline bool rtw_macid_is_used(struct macid_ctl_t *macid_ctl, u8 id) { return rtw_macid_is_set(&macid_ctl->used, id); } inline bool rtw_macid_is_bmc(struct macid_ctl_t *macid_ctl, u8 id) { return rtw_macid_is_set(&macid_ctl->bmc, id); } inline s8 rtw_macid_get_if_g(struct macid_ctl_t *macid_ctl, u8 id) { int i; #ifdef CONFIG_SHARED_BMC_MACID if (rtw_macid_is_bmc(macid_ctl,id)) return -1; #endif for (i=0;iif_g[i], id)) return i; } return -1; } inline s8 rtw_macid_get_ch_g(struct macid_ctl_t *macid_ctl, u8 id) { int i; for (i=0;i<2;i++) { if (rtw_macid_is_set(&macid_ctl->ch_g[i], id)) return i; } return -1; } void rtw_alloc_macid(_adapter *padapter, struct sta_info *psta) { int i; _irqL irqL; u8 bc_addr[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff}; struct dvobj_priv *dvobj = adapter_to_dvobj(padapter); struct macid_ctl_t *macid_ctl = dvobj_to_macidctl(dvobj); struct macid_bmp *used_map = &macid_ctl->used; //static u8 last_id = 0; /* for testing */ u8 last_id = 0; if (_rtw_memcmp(psta->hwaddr, adapter_mac_addr(padapter), ETH_ALEN)) { psta->mac_id = macid_ctl->num; return; } #ifdef CONFIG_SHARED_BMC_MACID if(_rtw_memcmp(psta->hwaddr, bc_addr, ETH_ALEN)) { /* use shared broadcast & multicast macid 1 */ _enter_critical_bh(&macid_ctl->lock, &irqL); rtw_macid_map_set(used_map, 1); rtw_macid_map_set(&macid_ctl->bmc, 1); for (i=0;iif_g[padapter->iface_id], 1); /* TODO ch_g? */ _exit_critical_bh(&macid_ctl->lock, &irqL); i = 1; goto assigned; } #endif _enter_critical_bh(&macid_ctl->lock, &irqL); for (i=last_id;inum;i++) { #ifdef CONFIG_SHARED_BMC_MACID if (i == 1) continue; #endif if (!rtw_macid_is_used(macid_ctl, i)) break; } if (i < macid_ctl->num) { rtw_macid_map_set(used_map, i); if(_rtw_memcmp(psta->hwaddr, bc_addr, ETH_ALEN)) rtw_macid_map_set(&macid_ctl->bmc, i); rtw_macid_map_set(&macid_ctl->if_g[padapter->iface_id], i); /* TODO ch_g? */ last_id++; last_id %= macid_ctl->num; } _exit_critical_bh(&macid_ctl->lock, &irqL); if (i >= macid_ctl->num) { psta->mac_id = macid_ctl->num; DBG_871X_LEVEL(_drv_err_, FUNC_ADPT_FMT" if%u, hwaddr:"MAC_FMT" no available macid\n" , FUNC_ADPT_ARG(padapter), padapter->iface_id+1, MAC_ARG(psta->hwaddr)); rtw_warn_on(1); goto exit; } else { goto assigned; } assigned: psta->mac_id = i; DBG_871X(FUNC_ADPT_FMT" if%u, hwaddr:"MAC_FMT" macid:%u\n" , FUNC_ADPT_ARG(padapter), padapter->iface_id+1, MAC_ARG(psta->hwaddr), psta->mac_id); exit: return; } void rtw_release_macid(_adapter *padapter, struct sta_info *psta) { _irqL irqL; u8 bc_addr[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff}; struct dvobj_priv *dvobj = adapter_to_dvobj(padapter); struct macid_ctl_t *macid_ctl = dvobj_to_macidctl(dvobj); if (_rtw_memcmp(psta->hwaddr, adapter_mac_addr(padapter), ETH_ALEN)) return; #ifdef CONFIG_SHARED_BMC_MACID if(_rtw_memcmp(psta->hwaddr, bc_addr, ETH_ALEN)) return; if (psta->mac_id == 1) { DBG_871X_LEVEL(_drv_err_, FUNC_ADPT_FMT" if%u, hwaddr:"MAC_FMT" with macid:%u\n" , FUNC_ADPT_ARG(padapter), padapter->iface_id+1, MAC_ARG(psta->hwaddr), psta->mac_id); rtw_warn_on(1); return; } #endif _enter_critical_bh(&macid_ctl->lock, &irqL); if (psta->mac_id < macid_ctl->num) { int i; if (!rtw_macid_is_used(macid_ctl, psta->mac_id)) { DBG_871X_LEVEL(_drv_err_, FUNC_ADPT_FMT" if%u, hwaddr:"MAC_FMT" macid:%u not used\n" , FUNC_ADPT_ARG(padapter), padapter->iface_id+1, MAC_ARG(psta->hwaddr), psta->mac_id); rtw_warn_on(1); } rtw_macid_map_clr(&macid_ctl->used, psta->mac_id); rtw_macid_map_clr(&macid_ctl->bmc, psta->mac_id); for (i=0;iif_g[i], psta->mac_id); for (i=0;i<2;i++) rtw_macid_map_clr(&macid_ctl->ch_g[i], psta->mac_id); } _exit_critical_bh(&macid_ctl->lock, &irqL); psta->mac_id = macid_ctl->num; } //For 8188E RA u8 rtw_search_max_mac_id(_adapter *padapter) { u8 max_mac_id=0; struct dvobj_priv *dvobj = adapter_to_dvobj(padapter); struct macid_ctl_t *macid_ctl = dvobj_to_macidctl(dvobj); int i; _irqL irqL; /* TODO: Only search for connected macid? */ _enter_critical_bh(&macid_ctl->lock, &irqL); for(i=(macid_ctl->num-1); i>0 ; i--) { if (!rtw_macid_is_used(macid_ctl, i)) break; } _exit_critical_bh(&macid_ctl->lock, &irqL); max_mac_id = i; return max_mac_id; } inline void rtw_macid_ctl_set_h2c_msr(struct macid_ctl_t *macid_ctl, u8 id, u8 h2c_msr) { if (id >= macid_ctl->num) { rtw_warn_on(1); return; } macid_ctl->h2c_msr[id] = h2c_msr; if (0) DBG_871X("macid:%u, h2c_msr:"H2C_MSR_FMT"\n", id, H2C_MSR_ARG(&macid_ctl->h2c_msr[id])); } inline void rtw_macid_ctl_init(struct macid_ctl_t *macid_ctl) { _rtw_spinlock_init(&macid_ctl->lock); } inline void rtw_macid_ctl_deinit(struct macid_ctl_t *macid_ctl) { _rtw_spinlock_free(&macid_ctl->lock); } #if 0 unsigned int setup_beacon_frame(_adapter *padapter, unsigned char *beacon_frame) { unsigned short ATIMWindow; unsigned char *pframe; struct tx_desc *ptxdesc; struct rtw_ieee80211_hdr *pwlanhdr; unsigned short *fctrl; unsigned int rate_len, len = 0; struct xmit_priv *pxmitpriv = &(padapter->xmitpriv); struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv); struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); WLAN_BSSID_EX *cur_network = &(pmlmeinfo->network); u8 bc_addr[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; _rtw_memset(beacon_frame, 0, 256); pframe = beacon_frame + TXDESC_SIZE; pwlanhdr = (struct rtw_ieee80211_hdr *)pframe; fctrl = &(pwlanhdr->frame_ctl); *(fctrl) = 0; _rtw_memcpy(pwlanhdr->addr1, bc_addr, ETH_ALEN); _rtw_memcpy(pwlanhdr->addr2, adapter_mac_addr(padapter), ETH_ALEN); _rtw_memcpy(pwlanhdr->addr3, get_my_bssid(cur_network), ETH_ALEN); SetFrameSubType(pframe, WIFI_BEACON); pframe += sizeof(struct rtw_ieee80211_hdr_3addr); len = sizeof(struct rtw_ieee80211_hdr_3addr); //timestamp will be inserted by hardware pframe += 8; len += 8; // beacon interval: 2 bytes _rtw_memcpy(pframe, (unsigned char *)(rtw_get_beacon_interval_from_ie(cur_network->IEs)), 2); pframe += 2; len += 2; // capability info: 2 bytes _rtw_memcpy(pframe, (unsigned char *)(rtw_get_capability_from_ie(cur_network->IEs)), 2); pframe += 2; len += 2; // SSID pframe = rtw_set_ie(pframe, _SSID_IE_, cur_network->Ssid.SsidLength, cur_network->Ssid.Ssid, &len); // supported rates... rate_len = rtw_get_rateset_len(cur_network->SupportedRates); pframe = rtw_set_ie(pframe, _SUPPORTEDRATES_IE_, ((rate_len > 8)? 8: rate_len), cur_network->SupportedRates, &len); // DS parameter set pframe = rtw_set_ie(pframe, _DSSET_IE_, 1, (unsigned char *)&(cur_network->Configuration.DSConfig), &len); // IBSS Parameter Set... //ATIMWindow = cur->Configuration.ATIMWindow; ATIMWindow = 0; pframe = rtw_set_ie(pframe, _IBSS_PARA_IE_, 2, (unsigned char *)(&ATIMWindow), &len); //todo: ERP IE // EXTERNDED SUPPORTED RATE if (rate_len > 8) { pframe = rtw_set_ie(pframe, _EXT_SUPPORTEDRATES_IE_, (rate_len - 8), (cur_network->SupportedRates + 8), &len); } if ((len + TXDESC_SIZE) > 256) { //DBG_871X("marc: beacon frame too large\n"); return 0; } //fill the tx descriptor ptxdesc = (struct tx_desc *)beacon_frame; //offset 0 ptxdesc->txdw0 |= cpu_to_le32(len & 0x0000ffff); ptxdesc->txdw0 |= cpu_to_le32(((TXDESC_SIZE + OFFSET_SZ) << OFFSET_SHT) & 0x00ff0000); //default = 32 bytes for TX Desc //offset 4 ptxdesc->txdw1 |= cpu_to_le32((0x10 << QSEL_SHT) & 0x00001f00); //offset 8 ptxdesc->txdw2 |= cpu_to_le32(BMC); ptxdesc->txdw2 |= cpu_to_le32(BK); //offset 16 ptxdesc->txdw4 = 0x80000000; //offset 20 ptxdesc->txdw5 = 0x00000000; //1M return (len + TXDESC_SIZE); } #endif _adapter *dvobj_get_port0_adapter(struct dvobj_priv *dvobj) { _adapter *port0_iface = NULL; int i; for (i=0;iiface_nums;i++) { if (get_iface_type(dvobj->padapters[i]) == IFACE_PORT0) break; } if (i<0 || i>=dvobj->iface_nums) rtw_warn_on(1); else port0_iface = dvobj->padapters[i]; return port0_iface; } #if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN) void rtw_get_current_ip_address(PADAPTER padapter, u8 *pcurrentip) { struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); struct in_device *my_ip_ptr = padapter->pnetdev->ip_ptr; u8 ipaddress[4]; if ( (pmlmeinfo->state & WIFI_FW_LINKING_STATE) || pmlmeinfo->state & WIFI_FW_AP_STATE) { if ( my_ip_ptr != NULL ) { struct in_ifaddr *my_ifa_list = my_ip_ptr->ifa_list ; if ( my_ifa_list != NULL ) { ipaddress[0] = my_ifa_list->ifa_address & 0xFF; ipaddress[1] = (my_ifa_list->ifa_address >> 8) & 0xFF; ipaddress[2] = (my_ifa_list->ifa_address >> 16) & 0xFF; ipaddress[3] = my_ifa_list->ifa_address >> 24; DBG_871X("%s: %d.%d.%d.%d ==========\n", __func__, ipaddress[0], ipaddress[1], ipaddress[2], ipaddress[3]); _rtw_memcpy(pcurrentip, ipaddress, 4); } } } } #endif #ifdef CONFIG_WOWLAN bool rtw_check_pattern_valid(u8 *input, u8 len) { int i = 0; bool res = _FALSE; for (i = 0 ; i < len ; i++) { if ((input[i] <= '9' && input[i] >= '0') || (input[i] <= 'F' && input[i] >= 'A') || (input[i] <= 'f' && input[i] >= 'a')) res = _TRUE; else res = _FALSE; } return res; } bool rtw_read_from_frame_mask(_adapter *adapter, u8 idx) { u32 data_l = 0, data_h = 0, rx_dma_buff_sz = 0, page_sz = 0; u16 offset, rx_buf_ptr = 0; u16 cam_start_offset = 0; u16 ctrl_l = 0, ctrl_h = 0; u8 count = 0, tmp = 0; int i = 0; bool res = _TRUE; if (idx > MAX_WKFM_NUM) { DBG_871X("[Error]: %s, pattern index is out of range\n", __func__); return _FALSE; } rtw_hal_get_def_var(adapter, HAL_DEF_RX_DMA_SZ_WOW, (u8 *)&rx_dma_buff_sz); if (rx_dma_buff_sz == 0) { DBG_871X("[Error]: %s, rx_dma_buff_sz is 0!!\n", __func__); return _FALSE; } rtw_hal_get_def_var(adapter, HAL_DEF_RX_PAGE_SIZE, (u8 *)&page_sz); if (page_sz == 0) { DBG_871X("[Error]: %s, page_sz is 0!!\n", __func__); return _FALSE; } offset = (u16)PageNum(rx_dma_buff_sz, page_sz); cam_start_offset = offset * page_sz; ctrl_l = 0x0; ctrl_h = 0x0; /* Enable RX packet buffer access */ rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, RXPKT_BUF_SELECT); /* Read the WKFM CAM */ for (i = 0; i < (WKFMCAM_ADDR_NUM / 2); i++) { /* * Set Rx packet buffer offset. * RxBufer pointer increases 1, we can access 8 bytes in Rx packet buffer. * CAM start offset (unit: 1 byte) = Index*WKFMCAM_SIZE * RxBufer pointer addr = (CAM start offset + per entry offset of a WKFMCAM)/8 * * Index: The index of the wake up frame mask * * WKFMCAM_SIZE: the total size of one WKFM CAM * * per entry offset of a WKFM CAM: Addr i * 4 bytes */ rx_buf_ptr = (cam_start_offset + idx*WKFMCAM_SIZE + i*8) >> 3; rtw_write16(adapter, REG_PKTBUF_DBG_CTRL, rx_buf_ptr); rtw_write16(adapter, REG_RXPKTBUF_CTRL, ctrl_l); data_l = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_L); data_h = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_H); DBG_871X("[%d]: %08x %08x\n", i, data_h, data_l); count = 0; do { tmp = rtw_read8(adapter, REG_RXPKTBUF_CTRL); rtw_udelay_os(2); count++; } while (!tmp && count < 100); if (count >= 100) { DBG_871X("%s count:%d\n", __func__, count); res = _FALSE; } } /* Disable RX packet buffer access */ rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, DISABLE_TRXPKT_BUF_ACCESS); return res; } bool rtw_write_to_frame_mask(_adapter *adapter, u8 idx, struct rtl_wow_pattern *context) { u32 data = 0, rx_dma_buff_sz = 0, page_sz = 0; u16 offset, rx_buf_ptr = 0; u16 cam_start_offset = 0; u16 ctrl_l = 0, ctrl_h = 0; u8 count = 0, tmp = 0; int res = 0, i = 0; if (idx > MAX_WKFM_NUM) { DBG_871X("[Error]: %s, pattern index is out of range\n", __func__); return _FALSE; } rtw_hal_get_def_var(adapter, HAL_DEF_RX_DMA_SZ_WOW, (u8 *)&rx_dma_buff_sz); if (rx_dma_buff_sz == 0) { DBG_871X("[Error]: %s, rx_dma_buff_sz is 0!!\n", __func__); return _FALSE; } rtw_hal_get_def_var(adapter, HAL_DEF_RX_PAGE_SIZE, (u8 *)&page_sz); if (page_sz == 0) { DBG_871X("[Error]: %s, page_sz is 0!!\n", __func__); return _FALSE; } offset = (u16)PageNum(rx_dma_buff_sz, page_sz); cam_start_offset = offset * page_sz; if (IS_HARDWARE_TYPE_8188E(adapter)) { ctrl_l = 0x0001; ctrl_h = 0x0001; } else { ctrl_l = 0x0f01; ctrl_h = 0xf001; } /* Enable RX packet buffer access */ rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, RXPKT_BUF_SELECT); /* Write the WKFM CAM */ for (i = 0; i < WKFMCAM_ADDR_NUM; i++) { /* * Set Rx packet buffer offset. * RxBufer pointer increases 1, we can access 8 bytes in Rx packet buffer. * CAM start offset (unit: 1 byte) = Index*WKFMCAM_SIZE * RxBufer pointer addr = (CAM start offset + per entry offset of a WKFMCAM)/8 * * Index: The index of the wake up frame mask * * WKFMCAM_SIZE: the total size of one WKFM CAM * * per entry offset of a WKFM CAM: Addr i * 4 bytes */ rx_buf_ptr = (cam_start_offset + idx*WKFMCAM_SIZE + i*4) >> 3; rtw_write16(adapter, REG_PKTBUF_DBG_CTRL, rx_buf_ptr); if (i == 0) { if (context->type == PATTERN_VALID) data = BIT(31); else if (context->type == PATTERN_BROADCAST) data = BIT(31) | BIT(26); else if (context->type == PATTERN_MULTICAST) data = BIT(31) | BIT(25); else if (context->type == PATTERN_UNICAST) data = BIT(31) | BIT(24); if (context->crc != 0) data |= context->crc; rtw_write32(adapter, REG_PKTBUF_DBG_DATA_L, data); rtw_write16(adapter, REG_RXPKTBUF_CTRL, ctrl_l); } else if (i == 1) { data = 0; rtw_write32(adapter, REG_PKTBUF_DBG_DATA_H, data); rtw_write16(adapter, REG_RXPKTBUF_CTRL, ctrl_h); } else if (i == 2 || i == 4) { data = context->mask[i - 2]; rtw_write32(adapter, REG_PKTBUF_DBG_DATA_L, data); /* write to RX packet buffer*/ rtw_write16(adapter, REG_RXPKTBUF_CTRL, ctrl_l); } else if (i == 3 || i == 5) { data = context->mask[i - 2]; rtw_write32(adapter, REG_PKTBUF_DBG_DATA_H, data); /* write to RX packet buffer*/ rtw_write16(adapter, REG_RXPKTBUF_CTRL, ctrl_h); } count = 0; do { tmp = rtw_read8(adapter, REG_RXPKTBUF_CTRL); rtw_udelay_os(2); count++; } while (tmp && count < 100); if (count >= 100) res = _FALSE; else res = _TRUE; } /* Disable RX packet buffer access */ rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, DISABLE_TRXPKT_BUF_ACCESS); return res; } void rtw_dump_priv_pattern(_adapter *adapter, u8 idx) { struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(adapter); char str_1[128]; char *p_str; u8 val8 = 0; int i = 0, j = 0, len = 0, max_len = 0; DBG_871X("=========[%d]========\n", idx); DBG_871X(">>>priv_pattern_content:\n"); p_str = str_1; max_len = sizeof(str_1); for (i = 0 ; i < MAX_WKFM_PATTERN_SIZE/8 ; i++) { _rtw_memset(p_str, 0, max_len); len = 0; for (j = 0 ; j < 8 ; j++) { val8 = pwrctl->patterns[idx].content[i*8 + j]; len += snprintf(p_str + len, max_len - len, "%02x ", val8); } DBG_871X("%s\n", p_str); } DBG_871X(">>>priv_pattern_mask:\n"); for (i = 0 ; i < MAX_WKFM_SIZE/8 ; i++) { _rtw_memset(p_str, 0, max_len); len = 0; for (j = 0 ; j < 8 ; j++) { val8 = pwrctl->patterns[idx].mask[i*8 + j]; len += snprintf(p_str + len, max_len - len, "%02x ", val8); } DBG_871X("%s\n", p_str); } } void rtw_clean_pattern(_adapter *adapter) { struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(adapter); struct rtl_wow_pattern zero_pattern; int i = 0; _rtw_memset(&zero_pattern, 0, sizeof(struct rtl_wow_pattern)); zero_pattern.type = PATTERN_INVALID; for (i = 0; i < MAX_WKFM_NUM; i++) rtw_write_to_frame_mask(adapter, i, &zero_pattern); pwrctl->wowlan_pattern_idx = 0; rtw_write8(adapter, REG_WKFMCAM_NUM, pwrctl->wowlan_pattern_idx); } void rtw_get_sec_iv(PADAPTER padapter, u8*pcur_dot11txpn, u8 *StaAddr) { struct sta_info *psta; struct security_priv *psecpriv = &padapter->securitypriv; _rtw_memset(pcur_dot11txpn, 0, 8); if(NULL == StaAddr) return; psta = rtw_get_stainfo(&padapter->stapriv, StaAddr); DBG_871X("%s(): StaAddr: %02x %02x %02x %02x %02x %02x\n", __func__, StaAddr[0], StaAddr[1], StaAddr[2], StaAddr[3], StaAddr[4], StaAddr[5]); if(psta) { if (psecpriv->dot11PrivacyAlgrthm != _NO_PRIVACY_ && psta->dot11txpn.val > 0) psta->dot11txpn.val--; AES_IV(pcur_dot11txpn, psta->dot11txpn, 0); DBG_871X("%s(): CurrentIV: %02x %02x %02x %02x %02x %02x %02x %02x \n" , __func__, pcur_dot11txpn[0],pcur_dot11txpn[1], pcur_dot11txpn[2],pcur_dot11txpn[3], pcur_dot11txpn[4], pcur_dot11txpn[5],pcur_dot11txpn[6],pcur_dot11txpn[7]); } } void rtw_set_sec_pn(PADAPTER padapter) { struct sta_info *psta; struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv); struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter); struct security_priv *psecpriv = &padapter->securitypriv; psta = rtw_get_stainfo(&padapter->stapriv, get_my_bssid(&pmlmeinfo->network)); if(psta) { if (pwrpriv->wowlan_fw_iv > psta->dot11txpn.val) { if (psecpriv->dot11PrivacyAlgrthm != _NO_PRIVACY_) psta->dot11txpn.val = pwrpriv->wowlan_fw_iv + 2; } else { DBG_871X("%s(): FW IV is smaller than driver\n", __func__); psta->dot11txpn.val += 2; } DBG_871X("%s: dot11txpn: 0x%016llx\n", __func__ ,psta->dot11txpn.val); } } #endif //CONFIG_WOWLAN #ifdef CONFIG_PNO_SUPPORT #define CSCAN_TLV_TYPE_SSID_IE 'S' #define CIPHER_IE "key_mgmt=" #define CIPHER_NONE "NONE" #define CIPHER_WPA_PSK "WPA-PSK" #define CIPHER_WPA_EAP "WPA-EAP IEEE8021X" /* * SSIDs list parsing from cscan tlv list */ int rtw_parse_ssid_list_tlv(char** list_str, pno_ssid_t* ssid, int max, int *bytes_left) { char* str; int idx = 0; if ((list_str == NULL) || (*list_str == NULL) || (*bytes_left < 0)) { DBG_871X("%s error paramters\n", __func__); return -1; } str = *list_str; while (*bytes_left > 0) { if (str[0] != CSCAN_TLV_TYPE_SSID_IE) { *list_str = str; DBG_871X("nssid=%d left_parse=%d %d\n", idx, *bytes_left, str[0]); return idx; } /* Get proper CSCAN_TLV_TYPE_SSID_IE */ *bytes_left -= 1; str += 1; if (str[0] == 0) { /* Broadcast SSID */ ssid[idx].SSID_len = 0; memset((char*)ssid[idx].SSID, 0x0, WLAN_SSID_MAXLEN); *bytes_left -= 1; str += 1; DBG_871X("BROADCAST SCAN left=%d\n", *bytes_left); } else if (str[0] <= WLAN_SSID_MAXLEN) { /* Get proper SSID size */ ssid[idx].SSID_len = str[0]; *bytes_left -= 1; str += 1; /* Get SSID */ if (ssid[idx].SSID_len > *bytes_left) { DBG_871X("%s out of memory range len=%d but left=%d\n", __func__, ssid[idx].SSID_len, *bytes_left); return -1; } memcpy((char*)ssid[idx].SSID, str, ssid[idx].SSID_len); *bytes_left -= ssid[idx].SSID_len; str += ssid[idx].SSID_len; DBG_871X("%s :size=%d left=%d\n", (char*)ssid[idx].SSID, ssid[idx].SSID_len, *bytes_left); } else { DBG_871X("### SSID size more that %d\n", str[0]); return -1; } if (idx++ > max) { DBG_871X("%s number of SSIDs more that %d\n", __func__, idx); return -1; } } *list_str = str; return idx; } int rtw_parse_cipher_list(struct pno_nlo_info *nlo_info, char* list_str) { char *pch, *pnext, *pend; u8 key_len = 0, index = 0; pch = list_str; if (nlo_info == NULL || list_str == NULL) { DBG_871X("%s error paramters\n", __func__); return -1; } while (strlen(pch) != 0) { pnext = strstr(pch, "key_mgmt="); if (pnext != NULL) { pch = pnext + strlen(CIPHER_IE); pend = strstr(pch, "}"); if (strncmp(pch, CIPHER_NONE, strlen(CIPHER_NONE)) == 0) { nlo_info->ssid_cipher_info[index] = 0x00; } else if (strncmp(pch, CIPHER_WPA_PSK, strlen(CIPHER_WPA_PSK)) == 0) { nlo_info->ssid_cipher_info[index] = 0x66; } else if (strncmp(pch, CIPHER_WPA_EAP, strlen(CIPHER_WPA_EAP)) == 0) { nlo_info->ssid_cipher_info[index] = 0x01; } index ++; pch = pend + 1; } else { break; } } return 0; } int rtw_dev_nlo_info_set(struct pno_nlo_info *nlo_info, pno_ssid_t* ssid, int num, int pno_time, int pno_repeat, int pno_freq_expo_max) { int i = 0; struct file *fp; mm_segment_t fs; loff_t pos = 0; u8 *source = NULL; long len = 0; DBG_871X("+%s+\n", __func__); nlo_info->fast_scan_period = pno_time; nlo_info->ssid_num = num & BIT_LEN_MASK_32(8); nlo_info->hidden_ssid_num = num & BIT_LEN_MASK_32(8); nlo_info->slow_scan_period = (pno_time * 2); nlo_info->fast_scan_iterations = 5; if (nlo_info->hidden_ssid_num > 8) nlo_info->hidden_ssid_num = 8; //TODO: channel list and probe index is all empty. for (i = 0 ; i < num ; i++) { nlo_info->ssid_length[i] = ssid[i].SSID_len; } /* cipher array */ fp = filp_open("/data/misc/wifi/wpa_supplicant.conf", O_RDONLY, 0644); if (IS_ERR(fp)) { DBG_871X("Error, wpa_supplicant.conf doesn't exist.\n"); DBG_871X("Error, cipher array using default value.\n"); return 0; } len = i_size_read(fp->f_path.dentry->d_inode); if (len < 0 || len > 2048) { DBG_871X("Error, file size is bigger than 2048.\n"); DBG_871X("Error, cipher array using default value.\n"); return 0; } fs = get_fs(); set_fs(KERNEL_DS); source = rtw_zmalloc(2048); if (source != NULL) { len = vfs_read(fp, source, len, &pos); rtw_parse_cipher_list(nlo_info, source); rtw_mfree(source, 2048); } set_fs(fs); filp_close(fp, NULL); DBG_871X("-%s-\n", __func__); return 0; } int rtw_dev_ssid_list_set(struct pno_ssid_list *pno_ssid_list, pno_ssid_t* ssid, u8 num) { int i = 0; if(num > MAX_PNO_LIST_COUNT) num = MAX_PNO_LIST_COUNT; for (i = 0 ; i < num ; i++) { _rtw_memcpy(&pno_ssid_list->node[i].SSID, ssid[i].SSID, ssid[i].SSID_len); pno_ssid_list->node[i].SSID_len = ssid[i].SSID_len; } return 0; } int rtw_dev_scan_info_set(_adapter *padapter, pno_ssid_t* ssid, unsigned char ch, unsigned char ch_offset, unsigned short bw_mode) { struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter); struct pno_scan_info *scan_info = pwrctl->pscan_info; int i; scan_info->channel_num = MAX_SCAN_LIST_COUNT; scan_info->orig_ch = ch; scan_info->orig_bw = bw_mode; scan_info->orig_40_offset = ch_offset; for(i = 0 ; i < scan_info->channel_num ; i++) { if (i < 11) scan_info->ssid_channel_info[i].active = 1; else scan_info->ssid_channel_info[i].active = 0; scan_info->ssid_channel_info[i].timeout = 100; scan_info->ssid_channel_info[i].tx_power = PHY_GetTxPowerIndex(padapter, 0, 0x02, bw_mode, i+1); scan_info->ssid_channel_info[i].channel = i+1; } DBG_871X("%s, channel_num: %d, orig_ch: %d, orig_bw: %d orig_40_offset: %d\n", __func__, scan_info->channel_num, scan_info->orig_ch, scan_info->orig_bw, scan_info->orig_40_offset); return 0; } int rtw_dev_pno_set(struct net_device *net, pno_ssid_t* ssid, int num, int pno_time, int pno_repeat, int pno_freq_expo_max) { _adapter *padapter = (_adapter *)rtw_netdev_priv(net); struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter); struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; int ret = -1; if (num == 0) { DBG_871X("%s, nssid is zero, no need to setup pno ssid list\n", __func__); return 0; } if (pwrctl == NULL) { DBG_871X("%s, ERROR: pwrctl is NULL\n", __func__); return -1; } else { pwrctl->pnlo_info = (pno_nlo_info_t*)rtw_zmalloc(sizeof(pno_nlo_info_t)); pwrctl->pno_ssid_list = (pno_ssid_list_t*)rtw_zmalloc(sizeof(pno_ssid_list_t)); pwrctl->pscan_info = (pno_scan_info_t*)rtw_zmalloc(sizeof(pno_scan_info_t)); } if (pwrctl->pnlo_info == NULL || pwrctl->pscan_info == NULL || pwrctl->pno_ssid_list == NULL){ DBG_871X("%s, ERROR: alloc nlo_info, ssid_list, scan_info fail\n", __func__); goto failing; } pwrctl->pno_in_resume = _FALSE; pwrctl->pno_inited = _TRUE; /* NLO Info */ ret = rtw_dev_nlo_info_set(pwrctl->pnlo_info, ssid, num, pno_time, pno_repeat, pno_freq_expo_max); /* SSID Info */ ret = rtw_dev_ssid_list_set(pwrctl->pno_ssid_list, ssid, num); /* SCAN Info */ ret = rtw_dev_scan_info_set(padapter, ssid, pmlmeext->cur_channel, pmlmeext->cur_ch_offset, pmlmeext->cur_bwmode); DBG_871X("+%s num: %d, pno_time: %d, pno_repeat:%d, pno_freq_expo_max:%d+\n", __func__, num, pno_time, pno_repeat, pno_freq_expo_max); return 0; failing: if (pwrctl->pnlo_info) { rtw_mfree((u8 *)pwrctl->pnlo_info, sizeof(pno_nlo_info_t)); pwrctl->pnlo_info = NULL; } if (pwrctl->pno_ssid_list) { rtw_mfree((u8 *)pwrctl->pno_ssid_list, sizeof(pno_ssid_list_t)); pwrctl->pno_ssid_list = NULL; } if (pwrctl->pscan_info) { rtw_mfree((u8 *)pwrctl->pscan_info, sizeof(pno_scan_info_t)); pwrctl->pscan_info = NULL; } return -1; } #ifdef CONFIG_PNO_SET_DEBUG void rtw_dev_pno_debug(struct net_device *net) { _adapter *padapter = (_adapter *)rtw_netdev_priv(net); struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter); int i = 0, j = 0; DBG_871X("*******NLO_INFO********\n"); DBG_871X("ssid_num: %d\n", pwrctl->pnlo_info->ssid_num); DBG_871X("fast_scan_iterations: %d\n", pwrctl->pnlo_info->fast_scan_iterations); DBG_871X("fast_scan_period: %d\n", pwrctl->pnlo_info->fast_scan_period); DBG_871X("slow_scan_period: %d\n", pwrctl->pnlo_info->slow_scan_period); DBG_871X("ssid_length: "); for (i = 0 ; i < MAX_PNO_LIST_COUNT ; i++) { printk("%d, ", pwrctl->pnlo_info->ssid_length[i]); } DBG_871X("\n"); DBG_871X("cipher_info: "); for (i = 0 ; i < MAX_PNO_LIST_COUNT ; i++) { DBG_871X("%d, ", pwrctl->pnlo_info->ssid_cipher_info[i]); } DBG_871X("\n"); DBG_871X("channel_info: "); for (i = 0 ; i < MAX_PNO_LIST_COUNT ; i++) { DBG_871X("%d, ", pwrctl->pnlo_info->ssid_channel_info[i]); } DBG_871X("\n"); DBG_871X("******SSID_LISD******\n"); for (i = 0 ; i < MAX_PNO_LIST_COUNT ; i++) { DBG_871X("[%d]SSID: %s \n", i, pwrctl->pno_ssid_list->node[i].SSID); } DBG_871X("******SCAN_INFO******\n"); DBG_871X("ch_num: %d\n", pwrctl->pscan_info->channel_num); DBG_871X("orig_ch: %d\n", pwrctl->pscan_info->orig_ch); DBG_871X("orig bw: %d\n", pwrctl->pscan_info->orig_bw); DBG_871X("orig 40 offset: %d\n", pwrctl->pscan_info->orig_40_offset); for(i = 0 ; i < MAX_SCAN_LIST_COUNT ; i++) { DBG_871X("[%02d] avtive:%d, timeout:%d, tx_power:%d, ch:%02d\n", i, pwrctl->pscan_info->ssid_channel_info[i].active, pwrctl->pscan_info->ssid_channel_info[i].timeout, pwrctl->pscan_info->ssid_channel_info[i].tx_power, pwrctl->pscan_info->ssid_channel_info[i].channel); } DBG_871X("*****************\n"); } #endif //CONFIG_PNO_SET_DEBUG #endif //CONFIG_PNO_SUPPORT