/****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ /* The purpose of rtw_io.c a. provides the API b. provides the protocol engine c. provides the software interface between caller and the hardware interface Compiler Flag Option: 1. CONFIG_SDIO_HCI: a. USE_SYNC_IRP: Only sync operations are provided. b. USE_ASYNC_IRP:Both sync/async operations are provided. 2. CONFIG_USB_HCI: a. USE_ASYNC_IRP: Both sync/async operations are provided. 3. CONFIG_CFIO_HCI: b. USE_SYNC_IRP: Only sync operations are provided. Only sync read/rtw_write_mem operations are provided. jackson@realtek.com.tw */ #define _RTW_IO_C_ #include #include #if defined (PLATFORM_LINUX) && defined (PLATFORM_WINDOWS) #error "Shall be Linux or Windows, but not both!\n" #endif #ifdef CONFIG_SDIO_HCI #define rtw_le16_to_cpu(val) val #define rtw_le32_to_cpu(val) val #define rtw_cpu_to_le16(val) val #define rtw_cpu_to_le32(val) val #else #define rtw_le16_to_cpu(val) le16_to_cpu(val) #define rtw_le32_to_cpu(val) le32_to_cpu(val) #define rtw_cpu_to_le16(val) cpu_to_le16(val) #define rtw_cpu_to_le32(val) cpu_to_le32(val) #endif u8 _rtw_read8(_adapter *adapter, u32 addr) { u8 r_val; //struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); u8 (*_read8)(struct intf_hdl *pintfhdl, u32 addr); _func_enter_; _read8 = pintfhdl->io_ops._read8; r_val = _read8(pintfhdl, addr); _func_exit_; return r_val; } u16 _rtw_read16(_adapter *adapter, u32 addr) { u16 r_val; //struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); u16 (*_read16)(struct intf_hdl *pintfhdl, u32 addr); _func_enter_; _read16 = pintfhdl->io_ops._read16; r_val = _read16(pintfhdl, addr); _func_exit_; return rtw_le16_to_cpu(r_val); } u32 _rtw_read32(_adapter *adapter, u32 addr) { u32 r_val; //struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); u32 (*_read32)(struct intf_hdl *pintfhdl, u32 addr); _func_enter_; _read32 = pintfhdl->io_ops._read32; r_val = _read32(pintfhdl, addr); _func_exit_; return rtw_le32_to_cpu(r_val); } int _rtw_write8(_adapter *adapter, u32 addr, u8 val) { //struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_write8)(struct intf_hdl *pintfhdl, u32 addr, u8 val); int ret; _func_enter_; _write8 = pintfhdl->io_ops._write8; ret = _write8(pintfhdl, addr, val); _func_exit_; return RTW_STATUS_CODE(ret); } int _rtw_write16(_adapter *adapter, u32 addr, u16 val) { //struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_write16)(struct intf_hdl *pintfhdl, u32 addr, u16 val); int ret; _func_enter_; _write16 = pintfhdl->io_ops._write16; val = rtw_cpu_to_le16(val); ret = _write16(pintfhdl, addr, val); _func_exit_; return RTW_STATUS_CODE(ret); } int _rtw_write32(_adapter *adapter, u32 addr, u32 val) { //struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_write32)(struct intf_hdl *pintfhdl, u32 addr, u32 val); int ret; _func_enter_; _write32 = pintfhdl->io_ops._write32; val = rtw_cpu_to_le32(val); ret = _write32(pintfhdl, addr, val); _func_exit_; return RTW_STATUS_CODE(ret); } int _rtw_writeN(_adapter *adapter, u32 addr ,u32 length , u8 *pdata) { //struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = (struct intf_hdl*)(&(pio_priv->intf)); int (*_writeN)(struct intf_hdl *pintfhdl, u32 addr,u32 length, u8 *pdata); int ret; _func_enter_; _writeN = pintfhdl->io_ops._writeN; ret = _writeN(pintfhdl, addr,length,pdata); _func_exit_; return RTW_STATUS_CODE(ret); } #ifdef CONFIG_SDIO_HCI u8 _rtw_sd_f0_read8(_adapter *adapter, u32 addr) { u8 r_val = 0x00; struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); u8 (*_sd_f0_read8)(struct intf_hdl *pintfhdl, u32 addr); _func_enter_; _sd_f0_read8 = pintfhdl->io_ops._sd_f0_read8; if (_sd_f0_read8) r_val = _sd_f0_read8(pintfhdl, addr); else DBG_871X_LEVEL(_drv_warning_, FUNC_ADPT_FMT" _sd_f0_read8 callback is NULL\n", FUNC_ADPT_ARG(adapter)); _func_exit_; return r_val; } #ifdef CONFIG_SDIO_INDIRECT_ACCESS u8 _rtw_sd_iread8(_adapter *adapter, u32 addr) { u8 r_val = 0x00; struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); u8 (*_sd_iread8)(struct intf_hdl *pintfhdl, u32 addr); _sd_iread8 = pintfhdl->io_ops._sd_iread8; if (_sd_iread8) r_val = _sd_iread8(pintfhdl, addr); else DBG_871X_LEVEL(_drv_err_, FUNC_ADPT_FMT" _sd_iread8 callback is NULL\n", FUNC_ADPT_ARG(adapter)); return r_val; } u16 _rtw_sd_iread16(_adapter *adapter, u32 addr) { u16 r_val = 0x00; struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); u16 (*_sd_iread16)(struct intf_hdl *pintfhdl, u32 addr); _sd_iread16 = pintfhdl->io_ops._sd_iread16; if (_sd_iread16) r_val = _sd_iread16(pintfhdl, addr); else DBG_871X_LEVEL(_drv_err_, FUNC_ADPT_FMT" _sd_iread16 callback is NULL\n", FUNC_ADPT_ARG(adapter)); return r_val; } u32 _rtw_sd_iread32(_adapter *adapter, u32 addr) { u32 r_val = 0x00; struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); u32 (*_sd_iread32)(struct intf_hdl *pintfhdl, u32 addr); _sd_iread32 = pintfhdl->io_ops._sd_iread32; if (_sd_iread32) r_val = _sd_iread32(pintfhdl, addr); else DBG_871X_LEVEL(_drv_err_, FUNC_ADPT_FMT" _sd_iread32 callback is NULL\n", FUNC_ADPT_ARG(adapter)); return r_val; } int _rtw_sd_iwrite8(_adapter *adapter, u32 addr, u8 val) { struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_sd_iwrite8)(struct intf_hdl *pintfhdl, u32 addr, u8 val); int ret = -1; _sd_iwrite8 = pintfhdl->io_ops._sd_iwrite8; if (_sd_iwrite8) ret = _sd_iwrite8(pintfhdl, addr, val); else DBG_871X_LEVEL(_drv_err_, FUNC_ADPT_FMT" _sd_iwrite8 callback is NULL\n", FUNC_ADPT_ARG(adapter)); return RTW_STATUS_CODE(ret); } int _rtw_sd_iwrite16(_adapter *adapter, u32 addr, u16 val) { struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_sd_iwrite16)(struct intf_hdl *pintfhdl, u32 addr, u16 val); int ret = -1; _sd_iwrite16 = pintfhdl->io_ops._sd_iwrite16; if (_sd_iwrite16) ret = _sd_iwrite16(pintfhdl, addr, val); else DBG_871X_LEVEL(_drv_err_, FUNC_ADPT_FMT" _sd_iwrite16 callback is NULL\n", FUNC_ADPT_ARG(adapter)); return RTW_STATUS_CODE(ret); } int _rtw_sd_iwrite32(_adapter *adapter, u32 addr, u32 val) { struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_sd_iwrite32)(struct intf_hdl *pintfhdl, u32 addr, u32 val); int ret = -1; _sd_iwrite32 = pintfhdl->io_ops._sd_iwrite32; if (_sd_iwrite32) ret = _sd_iwrite32(pintfhdl, addr, val); else DBG_871X_LEVEL(_drv_err_, FUNC_ADPT_FMT" _sd_iwrite32 callback is NULL\n", FUNC_ADPT_ARG(adapter)); return RTW_STATUS_CODE(ret); } #endif /* CONFIG_SDIO_INDIRECT_ACCESS */ #endif /* CONFIG_SDIO_HCI */ int _rtw_write8_async(_adapter *adapter, u32 addr, u8 val) { //struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_write8_async)(struct intf_hdl *pintfhdl, u32 addr, u8 val); int ret; _func_enter_; _write8_async = pintfhdl->io_ops._write8_async; ret = _write8_async(pintfhdl, addr, val); _func_exit_; return RTW_STATUS_CODE(ret); } int _rtw_write16_async(_adapter *adapter, u32 addr, u16 val) { //struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_write16_async)(struct intf_hdl *pintfhdl, u32 addr, u16 val); int ret; _func_enter_; _write16_async = pintfhdl->io_ops._write16_async; val = rtw_cpu_to_le16(val); ret = _write16_async(pintfhdl, addr, val); _func_exit_; return RTW_STATUS_CODE(ret); } int _rtw_write32_async(_adapter *adapter, u32 addr, u32 val) { //struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); int (*_write32_async)(struct intf_hdl *pintfhdl, u32 addr, u32 val); int ret; _func_enter_; _write32_async = pintfhdl->io_ops._write32_async; val = rtw_cpu_to_le32(val); ret = _write32_async(pintfhdl, addr, val); _func_exit_; return RTW_STATUS_CODE(ret); } void _rtw_read_mem(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem) { void (*_read_mem)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem); //struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); _func_enter_; if (RTW_CANNOT_RUN(adapter)) { RT_TRACE(_module_rtl871x_io_c_, _drv_info_, ("rtw_read_mem:bDriverStopped(%s) OR bSurpriseRemoved(%s)" , rtw_is_drv_stopped(adapter)?"True":"False" , rtw_is_surprise_removed(adapter)?"True":"False")); return; } _read_mem = pintfhdl->io_ops._read_mem; _read_mem(pintfhdl, addr, cnt, pmem); _func_exit_; } void _rtw_write_mem(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem) { void (*_write_mem)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem); //struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); _func_enter_; _write_mem = pintfhdl->io_ops._write_mem; _write_mem(pintfhdl, addr, cnt, pmem); _func_exit_; } void _rtw_read_port(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem) { u32 (*_read_port)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem); //struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); _func_enter_; if (RTW_CANNOT_RUN(adapter)) { RT_TRACE(_module_rtl871x_io_c_, _drv_info_, ("rtw_read_port:bDriverStopped(%s) OR bSurpriseRemoved(%s)" , rtw_is_drv_stopped(adapter)?"True":"False" , rtw_is_surprise_removed(adapter)?"True":"False")); return; } _read_port = pintfhdl->io_ops._read_port; _read_port(pintfhdl, addr, cnt, pmem); _func_exit_; } void _rtw_read_port_cancel(_adapter *adapter) { void (*_read_port_cancel)(struct intf_hdl *pintfhdl); struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); _read_port_cancel = pintfhdl->io_ops._read_port_cancel; RTW_DISABLE_FUNC(adapter, DF_RX_BIT); if(_read_port_cancel) _read_port_cancel(pintfhdl); } u32 _rtw_write_port(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem) { u32 (*_write_port)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem); //struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); u32 ret = _SUCCESS; _func_enter_; _write_port = pintfhdl->io_ops._write_port; ret = _write_port(pintfhdl, addr, cnt, pmem); _func_exit_; return ret; } u32 _rtw_write_port_and_wait(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem, int timeout_ms) { int ret = _SUCCESS; struct xmit_buf *pxmitbuf = (struct xmit_buf *)pmem; struct submit_ctx sctx; rtw_sctx_init(&sctx, timeout_ms); pxmitbuf->sctx = &sctx; ret = _rtw_write_port(adapter, addr, cnt, pmem); if (ret == _SUCCESS) ret = rtw_sctx_wait(&sctx, __func__); return ret; } void _rtw_write_port_cancel(_adapter *adapter) { void (*_write_port_cancel)(struct intf_hdl *pintfhdl); struct io_priv *pio_priv = &adapter->iopriv; struct intf_hdl *pintfhdl = &(pio_priv->intf); _write_port_cancel = pintfhdl->io_ops._write_port_cancel; RTW_DISABLE_FUNC(adapter, DF_TX_BIT); if(_write_port_cancel) _write_port_cancel(pintfhdl); } int rtw_init_io_priv(_adapter *padapter, void (*set_intf_ops)(_adapter *padapter,struct _io_ops *pops)) { struct io_priv *piopriv = &padapter->iopriv; struct intf_hdl *pintf = &piopriv->intf; if (set_intf_ops == NULL) return _FAIL; piopriv->padapter = padapter; pintf->padapter = padapter; pintf->pintf_dev = adapter_to_dvobj(padapter); set_intf_ops(padapter,&pintf->io_ops); return _SUCCESS; } /* * Increase and check if the continual_io_error of this @param dvobjprive is larger than MAX_CONTINUAL_IO_ERR * @return _TRUE: * @return _FALSE: */ int rtw_inc_and_chk_continual_io_error(struct dvobj_priv *dvobj) { int ret = _FALSE; int value; if( (value=ATOMIC_INC_RETURN(&dvobj->continual_io_error)) > MAX_CONTINUAL_IO_ERR) { DBG_871X("[dvobj:%p][ERROR] continual_io_error:%d > %d\n", dvobj, value, MAX_CONTINUAL_IO_ERR); ret = _TRUE; } else { //DBG_871X("[dvobj:%p] continual_io_error:%d\n", dvobj, value); } return ret; } /* * Set the continual_io_error of this @param dvobjprive to 0 */ void rtw_reset_continual_io_error(struct dvobj_priv *dvobj) { ATOMIC_SET(&dvobj->continual_io_error, 0); } #ifdef DBG_IO u32 read_sniff_ranges[][2] = { //{0x520, 0x523}, }; u32 write_sniff_ranges[][2] = { //{0x520, 0x523}, //{0x4c, 0x4c}, }; int read_sniff_num = sizeof(read_sniff_ranges)/sizeof(u32)/2; int write_sniff_num = sizeof(write_sniff_ranges)/sizeof(u32)/2; bool match_read_sniff_ranges(u32 addr, u16 len) { int i; for (i = 0; i read_sniff_ranges[i][0] && addr <= read_sniff_ranges[i][1]) return _TRUE; } return _FALSE; } bool match_write_sniff_ranges(u32 addr, u16 len) { int i; for (i = 0; i write_sniff_ranges[i][0] && addr <= write_sniff_ranges[i][1]) return _TRUE; } return _FALSE; } struct rf_sniff_ent { u8 path; u16 reg; u32 mask; }; struct rf_sniff_ent rf_read_sniff_ranges[] = { /* example for all path addr 0x55 with all RF Reg mask */ /* {MAX_RF_PATH, 0x55, bRFRegOffsetMask}, */ }; struct rf_sniff_ent rf_write_sniff_ranges[] = { /* example for all path addr 0x55 with all RF Reg mask */ /* {MAX_RF_PATH, 0x55, bRFRegOffsetMask}, */ }; int rf_read_sniff_num = sizeof(rf_read_sniff_ranges)/sizeof(struct rf_sniff_ent); int rf_write_sniff_num = sizeof(rf_write_sniff_ranges)/sizeof(struct rf_sniff_ent); bool match_rf_read_sniff_ranges(u8 path, u32 addr, u32 mask) { int i; for (i = 0; i < rf_read_sniff_num; i++) { if (rf_read_sniff_ranges[i].path == MAX_RF_PATH || rf_read_sniff_ranges[i].path == path) if (addr == rf_read_sniff_ranges[i].reg && (mask & rf_read_sniff_ranges[i].mask)) return _TRUE; } return _FALSE; } bool match_rf_write_sniff_ranges(u8 path, u32 addr, u32 mask) { int i; for (i = 0; i < rf_write_sniff_num; i++) { if (rf_write_sniff_ranges[i].path == MAX_RF_PATH || rf_write_sniff_ranges[i].path == path) if (addr == rf_write_sniff_ranges[i].reg && (mask & rf_write_sniff_ranges[i].mask)) return _TRUE; } return _FALSE; } u8 dbg_rtw_read8(_adapter *adapter, u32 addr, const char *caller, const int line) { u8 val = _rtw_read8(adapter, addr); if (match_read_sniff_ranges(addr, 1)) DBG_871X("DBG_IO %s:%d rtw_read8(0x%04x) return 0x%02x\n", caller, line, addr, val); return val; } u16 dbg_rtw_read16(_adapter *adapter, u32 addr, const char *caller, const int line) { u16 val = _rtw_read16(adapter, addr); if (match_read_sniff_ranges(addr, 2)) DBG_871X("DBG_IO %s:%d rtw_read16(0x%04x) return 0x%04x\n", caller, line, addr, val); return val; } u32 dbg_rtw_read32(_adapter *adapter, u32 addr, const char *caller, const int line) { u32 val = _rtw_read32(adapter, addr); if (match_read_sniff_ranges(addr, 4)) DBG_871X("DBG_IO %s:%d rtw_read32(0x%04x) return 0x%08x\n", caller, line, addr, val); return val; } int dbg_rtw_write8(_adapter *adapter, u32 addr, u8 val, const char *caller, const int line) { if (match_write_sniff_ranges(addr, 1)) DBG_871X("DBG_IO %s:%d rtw_write8(0x%04x, 0x%02x)\n", caller, line, addr, val); return _rtw_write8(adapter, addr, val); } int dbg_rtw_write16(_adapter *adapter, u32 addr, u16 val, const char *caller, const int line) { if (match_write_sniff_ranges(addr, 2)) DBG_871X("DBG_IO %s:%d rtw_write16(0x%04x, 0x%04x)\n", caller, line, addr, val); return _rtw_write16(adapter, addr, val); } int dbg_rtw_write32(_adapter *adapter, u32 addr, u32 val, const char *caller, const int line) { if (match_write_sniff_ranges(addr, 4)) DBG_871X("DBG_IO %s:%d rtw_write32(0x%04x, 0x%08x)\n", caller, line, addr, val); return _rtw_write32(adapter, addr, val); } int dbg_rtw_writeN(_adapter *adapter, u32 addr ,u32 length , u8 *data, const char *caller, const int line) { if (match_write_sniff_ranges(addr, length)) DBG_871X("DBG_IO %s:%d rtw_writeN(0x%04x, %u)\n", caller, line, addr, length); return _rtw_writeN(adapter, addr, length, data); } #ifdef CONFIG_SDIO_HCI u8 dbg_rtw_sd_f0_read8(_adapter *adapter, u32 addr, const char *caller, const int line) { u8 val = _rtw_sd_f0_read8(adapter, addr); #if 0 if (match_read_sniff_ranges(addr, 1)) DBG_871X("DBG_IO %s:%d rtw_sd_f0_read8(0x%04x) return 0x%02x\n", caller, line, addr, val); #endif return val; } #ifdef CONFIG_SDIO_INDIRECT_ACCESS u8 dbg_rtw_sd_iread8(_adapter *adapter, u32 addr, const char *caller, const int line) { u8 val = rtw_sd_iread8(adapter, addr); if (match_read_sniff_ranges(addr, 1)) DBG_871X("DBG_IO %s:%d rtw_sd_iread8(0x%04x) return 0x%02x\n", caller, line, addr, val); return val; } u16 dbg_rtw_sd_iread16(_adapter *adapter, u32 addr, const char *caller, const int line) { u16 val = _rtw_sd_iread16(adapter, addr); if (match_read_sniff_ranges(addr, 2)) DBG_871X("DBG_IO %s:%d rtw_sd_iread16(0x%04x) return 0x%04x\n", caller, line, addr, val); return val; } u32 dbg_rtw_sd_iread32(_adapter *adapter, u32 addr, const char *caller, const int line) { u32 val = _rtw_sd_iread32(adapter, addr); if (match_read_sniff_ranges(addr, 4)) DBG_871X("DBG_IO %s:%d rtw_sd_iread32(0x%04x) return 0x%08x\n", caller, line, addr, val); return val; } int dbg_rtw_sd_iwrite8(_adapter *adapter, u32 addr, u8 val, const char *caller, const int line) { if (match_write_sniff_ranges(addr, 1)) DBG_871X("DBG_IO %s:%d rtw_sd_iwrite8(0x%04x, 0x%02x)\n", caller, line, addr, val); return _rtw_sd_iwrite8(adapter, addr, val); } int dbg_rtw_sd_iwrite16(_adapter *adapter, u32 addr, u16 val, const char *caller, const int line) { if (match_write_sniff_ranges(addr, 2)) DBG_871X("DBG_IO %s:%d rtw_sd_iwrite16(0x%04x, 0x%04x)\n", caller, line, addr, val); return _rtw_sd_iwrite16(adapter, addr, val); } int dbg_rtw_sd_iwrite32(_adapter *adapter, u32 addr, u32 val, const char *caller, const int line) { if (match_write_sniff_ranges(addr, 4)) DBG_871X("DBG_IO %s:%d rtw_sd_iwrite32(0x%04x, 0x%08x)\n", caller, line, addr, val); return _rtw_sd_iwrite32(adapter, addr, val); } #endif /* CONFIG_SDIO_INDIRECT_ACCESS */ #endif /* CONFIG_SDIO_HCI */ #endif